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Z Agents

_&! ' Main Characteristic:

Autonomy, the agents must be autonomous
In their actions and decisions.



e —

”" Agents

&[ ' Agents’ features (intelligence?):

=) Reactivity to the environment

m) Proactiviness, planning to reach a goal

m) Social capacities
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” Agents
!& /‘_ Formalizing it:
Environment: {e,, €4, €5, €3, ....}

Agents’ actions: {Ag, Aq, Ay, A3, ...}

Sequence for the model:
{(€=0s At=0)s (€= 1, At=1), (B=2, Ai=2), ----}
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”" Agents

!@ /“ Decisions:

The agents must select an action based on the

environment:
- state of the environment e,

- state of the agent: a;

P(Ai.1) = f(eg, €1, .... .64, 8g, A4, .... A, Aq, ..., AY)



”" Agents o

!@ /“ Decisions:

The agents can be

« Reactive:
P(Aiq) = f(eg, €4, .... ,&)

* “Planning” with a goal: they have a payoff function
that attempt to optimize.
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" Agents

@ Memory:

* Infinite memory:
P(Ai.1) = f(eg, €1, .... .64, 8g, A4, .... A, Aq, ..., AY)

 Markovian: P(A:q) = f(e;, a;, Ay




”" Agents

@ Updates:

* Asynchronous: agent by agent

* Synchronous or Parallel: all the agents update to
t+1 at the same time depending on the state of the
system in t
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Communication

a. Grain movement
network

b. Management
communication network

c. Insect and fungus
movement network
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7 Playing games
John von Neumann y Oskar Morgenstern (1944):

The theory of games and economic behavior
(zero-sum games)

John Nash (1950):
Equilibrium points in n-person games

John Maynard Smith (1982):
Evolution and the theory of games
Evolution (biological)

William Hamilton and Robert Axelrod (1981):

Robert Axelrod (1984):
The Evolution of Cooperation
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Playing games
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most famous and influential idea models in

Playing games

oy the social sciences! (~3,000,000 results on
_ Google Scholar)
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Playing games

* The origin of cooperation.

 Whenever there is a conflict between self-interest and the
common good.

* You are tempted to do something, but know it would be a
great mistake if everybody did the same thing.

‘The origins of virtue’, Matt Ridley (1996)



" Playing games

*A set of strategies (one per player) from which
no player benefits by changing unilaterally

*A set of strategies such that each one of them is a
best response (highest payoff) to the joint strategies of the rest

Ask what each player would do, taking into account the decision-making of the others: Each player is told the strategies of
the others. Suppose then that each player asks himself or herself: "Knowing the strategies of the other players, and treating the
strategies of the other players as set in stone, can | benefit by changing my strategy?"

If any player would answer "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch (or
is indifferent between switching and not) then the set of strategies is a Nash equilibrium.



P I ayi n g g a m es John Maynard Smith

Evolutionary version of Game Theory: i) Players not required to be rational
ii) Player required to have a strategy

i) Multiplayer game

Strategies are not fixed, the is dynamical: How strategies are selected on time by interaction?

Classical theory: players have strategy sets from where to choose their actions
Biology: species have strategy sets from which every individual inherits one

Classical theory: one-shot games and iterated games
Biology: random and repeated pairing of individuals, with strategies based on their genome and not on the past

Classical theory: Nash equilibrium
Biology: Evolutionary stable strategy (ESS)



Playing games

* In the 1980s, Axelrod organized two tournaments and invited many scientists and mathematicians to submit
strategies (n-person games).

* The strategies played iterated games against one another in a round-robin fashion.

» Some strategies were quite complicated — e.g., creating complex predictive models of various opponents

* Be Nice (never be first to defect)

* Be Forgiving (be willing to cooperate if cooperation is offered)

* Be Retaliatory (be willing to defect if others defect against you)

* Be Clear (be transparent about what your strategy is — make it easy to infer)

And the winner is (Anatole Rapoport)

Start out by cooperating. Then at each successive
round, do what the other player did on the previous round.

Simplest of all strategies and Nice, Forgiving, Retaliatory, Clear
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The critical point is located at the intersection of the three curves.



» Total cost of flight delay in US in 2007 was 41B dollars.

* Inthe EU, the direct cost is around 2B euros -
* Rich transport dynamics. -y
» Cascading failure. o
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(http://www.eurocontrol.int )

(http://www.transtats.bts.gov/)
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Databases: Planes and delays

« Airline On-Time Performance Data
(BTS (USA), CODA Eurocontrol-EU))

» Schedule & actual departure (arrival) times
» Origin & destination airports
» Airline id

> Tail number

« 2010 flights (USA):

> 6,450,129 flights (74 %)
» 18 carriers

» 305 airports

+ 2013 flights (EV):

» 20,000 flights/day
» > 50 carriers

Network:

* Nodes: airports
* Edges: direct flights between airports
» Node attributes: average delay per flight

» 320 airports
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Socio technical systems :

Clusters:

* Formed by airports in problems
» average delay per flight > T min

* Must be connected (flight route between them)

* A group of airports connected by flights that
their average delay is higher than T minutes

2

Cluster B
Cluster A size 2

size 4
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~~ Socio technical systems >

* March 12, 2010
» Average delay per delayed flight:
» 53.2 min
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Initial Conditions

From the data...
- Known - when, where and the departure delay
for the first flight of the sequence.

Random initial conditions. ..
- Fixed initial delay (min)
- % of initially delayed planes

Tzfct.d (ng) = rnaJX[T'sjch.d (pl])? Tgct.a(pij) + Ts; maX[Tgct.a(pi'j)]] ) Vi 7é [
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““Socio technical systems

» With random initial conditions. ..
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» Each day is potentially a bad day, if some initial conditions are met.
* Flight connectivity is a key factor for the rise of congestion in the network.

* Sensitivity to initial conditions.



~ Socio technical systems
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Socio technical systems

Mobility.and cities
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Mobility and cities




Socio technical systems

Mobility and cities

MATSIM + Phone users agenda

- xecution core nalysis
conditions y
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Socio technical systems

Modal split
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Conclusions o

Needs: Data & knowledge on the decision process
Steps:

» Agents, communication, decision making
* Characterization

« Calibration

« Validation

* Scenario analysis



