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Introduction to Deep Learning
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Deep learning for generating content

“A photo of an astronaut riding a horse.”

Deep Learning: Foundations and Applications 3/53



Introduction to Deep Learning Fundamentals of Deep Learning Deep Learning in Practice Convnets More Architectures Conclusions

Deep learning for generating content

“Write code in TensorFlow to train a
neural network.”
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What is Deep Learning?

Teaching computers how to learn a task directly from raw data.
Image from [1].
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Why Deep Learning?

Hand-engineered features are time consuming, brittle, and not scalable in practice.
Can we learn the underlying features directly from the data?

Image from [1].
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Why now?

Diagram from [1].
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Fundamentals of Deep Learning
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A single neuron: the Perceptron

w0

1

w1x1

w2

x2

Inputs Weights Sum Non-linearity Output

▶ ŷ = g (w0 + x1w1 + x2w2)

▶ w0: bias term

▶ g(·) : nonlinear activation
function, e.g. sigmoid
g(z) = 1

1+e−z
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Nonlinear activation functions

Sigmoid function
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Rectified Linear Unit (ReLU)
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Simplified neuron representation

x1
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xm

z

z = w0 +
∑m

j=1 xjwj ŷ = g(z)
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Hidden layer with multiple neurons, multiple outputs

Inputs Hidden layer Outputs

import tensorflow as tf

model = tf.keras.Sequential([

tf.keras.layers.Dense(4, activation='relu',
input_shape=(3,)),

tf.keras.layers.Dense(2, activation='softmax')
])

zi = w
(1)
0,i +

∑m
j=1 xjw

(1)
j ,i ŷi = g

(
w

(2)
0,i +

∑d1
j=1 g(zj)w

(2)
j ,i

)
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Deep Neural Network (DNN)

Inputs Hidden layer Outputs

zk,i = w
(k)
0,i +

∑nk−1

j=1 g(zk−1,j)w
(k)
j ,i

import tensorflow as tf

model = tf.keras.Sequential([

tf.keras.layers.Dense(5,

input_shape=(3,)),

tf.keras.layers.Dense(6),

tf.keras.layers.Dense(6),

tf.keras.layers.Dense(6),

tf.keras.layers.Dense(5),

tf.keras.layers.Dense(4)

])
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Loss functions

▶ The loss of our network measures the cost incurred from incorrect predictions.

▶ The empirical loss measures the total loss over our entire dataset.

X =


4.1 1.3 2.0
1.2 1.2 3.9
4.4 −1.1 3.1

...

 Ŷ =


0.3
0.1
0.9
...

 ;Y =


1
0
1
...



Empirical loss: J(W ) = 1
n

∑n
i=1 L(ŷ (i), y (i))
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Loss functions

Binary cross entropy loss:

▶ For classification models that output 0 or 1.

▶ J(W ) = − 1
n

∑n
i=1

[
y (i) log

(
ŷ (i)

)
+ (1− y (i)) log

(
1− ŷ (i)

)]
con ŷ = f (x (i);W )

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y, predicted))

Mean Squared Error loss:

▶ For regression models that output continuous variables.

▶ J(W ) = 1
n

∑n
i=1

(
y (i) − ŷ (i)

)2
con ŷ = f (x (i);W )

loss = tf.reduce_mean(tf.square(tf.subtract(y, predicted)))

loss = tf.keras.losses.MSE(y, predicted)
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1− ŷ (i)

)]
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Loss minimization

Find the network weights that achieve the lowest loss.

W ∗ = argmin
W

J
(
{W (0),W (1)), . . . }

)
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Loss minimization

Randomly pick an initial value for (w0,w1).
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Loss minimization

Compute the gradient ∂J(W )/∂W .
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Loss minimization

Take a small step in the opposite direction of the gradient.

Deep Learning: Foundations and Applications 19/53



Introduction to Deep Learning Fundamentals of Deep Learning Deep Learning in Practice Convnets More Architectures Conclusions

Loss minimization

Repeat until convergence.
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Gradient descent algorithm

Algorithm:

1. Initialize weights randomly ∼ N (0, σ2)

2. Loop until convergence:

3. Compute gradient ∂J(W )
∂W

4. Update weights: W ←W − η ∂J(W )
∂W

5. Return weights

▶ How do we find the gradient ∂J(W )
∂W ?

▶ How do we find the learning rate η ?
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Computing the gradients: Backpropagation

How does a small change in one weight (e.g. w1) affect the final loss J(W )?

Apply the chain rule: ∂J(W )
∂w1

= ∂J(W )
∂ŷ · ∂ŷ

∂z1
· ∂z1∂w1

Traditionally: calculated by hand. Nowadays: Autograd.
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Deep Learning in Practice
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How to choose the learning rate?

A correct choice of the learning rate is critical.

▶ Large learning rates overshoot, become unstable and diverge.

▶ Small learning rates converge slowly.

What about an adaptive learning rate?

Deep Learning: Foundations and Applications 24/53
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Different gradient descent algorithms
W : parameters, η: learning rate, gt : gradient

∂J(W )
∂W

v and m: used for moving averages of gradients.

SGD (Stochastic Gradient Descent)

Classic optimization method.

Wt+1 = Wt − η · gt

Momentum
Incorporates velocity to accelerate SGD:

vt = γvt−1 + ηgt

Wt+1 = Wt − vt

RMSprop
Adapts the learning rate for each parameter:

vt = βvt−1 + (1− β)g 2
t

Wt+1 = Wt −
η√

vt + ϵ
· gt

Adam (Adaptive Moment Estimation)

Combines Momentum and RMSprop:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

Wt+1 = Wt −
η√

vt + ϵ
·mt
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Different gradient descent algorithms
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Source: https://gist.github.com/MaverickMeerkat/792628c18f42140d76a33cc2ccf153af

Deep Learning: Foundations and Applications 26/53

https://gist.github.com/MaverickMeerkat/792628c18f42140d76a33cc2ccf153af


Introduction to Deep Learning Fundamentals of Deep Learning Deep Learning in Practice Convnets More Architectures Conclusions

Practical gradient descent: mini-batches

Algorithm:

1. Initialize weights randomly ∼ N (0, σ2)

2. Loop until convergence:

3. Compute gradient ∂J(W )
∂W

4. Update weights: W ←W − η ∂J(W )
∂W

5. Return weights

▶ In practice, calculating the gradient can be computationally intensive.

▶ Mini-batches: compromise between full calculation (expensive) and calculation for
a single point (noisy).

▶ Pick a batch of B data points. ∂J(W )
∂W = 1

B

∑B
k=1

∂Jk (W )
∂W
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Example 1: Multilayer Perceptron (MLP)

MLP for classification:
example01 mlp.ipynb

Iris data set:

▶ 3 classes

▶ 150 data

▶ 4 features
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Learning curves

▶ Visual representations of model training
progress over time.

▶ Display training and validation loss or
accuracy metrics.

▶ Assist in hyperparameter tuning and
determining optimal training duration.

TensorBoard enables real-time monitoring and analysis of learning curves.
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The problem of overfitting

3 classifiers have been trained over the dataset shown in the figure

Which one will perform better over a different test dataset? Tradeoff between:

▶ Training error / test error (generalization error, a.k.a. out-of-sample error)

▶ Bias/variance of the model/classifier
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▶ Underfitting refers to a model that cannot learn the training dataset.

▶ Overfitting refers to a model that has learned the training dataset too well, including the
statistical noise or random fluctuations in the training dataset.

The complexity of the learned model can be restricted by regularizing the optimization problem.

Deep Learning: Foundations and Applications 32/53
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Dropout

▶ Randomly drop units (along with their connections) from
the neural network during traininga.

▶ Reduces overfitting, improves generalization.

model = tf.keras.models.Sequential([

tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.5),

tf.keras.layers.Dense(10, activation='softmax')
])

aNitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting”. In: The journal of machine learning research 15.1
(2014), pp. 1929–1958.

a) Standard neural network

b) After applying dropout
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Early stopping

Use the model obtained before overfitting happened.
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Batch Normalization

▶ Normalizes layer inputs to have zero mean and unit variance
across mini-batchesa.

▶ Stabilizes the learning process, allows for higher learning rates,
and reduces the sensitivity to initial weights.

▶ Enabling faster and more reliable training of deep networks.

model = tf.keras.models.Sequential([

tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.BatchNormalization(),

tf.keras.layers.Dense(10, activation='softmax')
])

aSergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR. 2015, pp. 448–456.
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Convolutional Neural Networks
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How a computer sees an image

Image from [3].
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Learning feature representation

Can we learn a hierarchy of features directly from the data instead of
hand-engineering them?
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Fully-connected neural network

Input:

▶ 2D image

▶ Flatten into
a 1D array.

Inputs Hidden layer Outputs

▶ Connect neuron in hidden
layer to all neurons in
previous layer.

▶ No spatial information!

▶ Many parameters!

How can we maintain some of that spatial structure?

Deep Learning: Foundations and Applications 39/53
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Filter extraction with convolution

▶ Filter of size 3× 3: 9 different weights.

▶ Apply this same filter to 3× 3 patches in input.

▶ Shift by 1 pixel (stride=1).

Deep Learning: Foundations and Applications 40/53
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Filter extraction with convolution

▶ Filter of size 3× 3: 9 different weights.

▶ Apply this same filter to 3× 3 patches in input.

▶ Shift by 1 pixel (stride=1).

Images from Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep learning”. In: arXiv preprint arXiv:1603.07285
(2016)
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Interactive demo of a convolutional neural network

https://adamharley.com/nn_vis/cnn/2d.html
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Producing feature maps

Image from [1].
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Convolution and pooling

Figure from Verschoof and Lambers, 2019.
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Example 2: Convnets for MNIST

example02 convnet orig.ipynb
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Architectures
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Generative Adversarial Networks (GANs)
▶ GANs consist of two neural networks, a Generator and a Discriminator, that are

trained simultaneously through adversarial competition1.
▶ The generator’s role is to generate realistic data samples from random noise.
▶ The discriminator’s role is to distinguish between real data samples and those

generated by the generator.

Random noise Synthetic image

Real images

Generator

Discriminator

Real

Synthetic

1Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information processing
systems 27 (2014).
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Residual Networks
▶ Introduce skip connections, which bypass one or more layersa.

▶ Addresses the degradation problem where adding more layers to
a deep network can lead to higher training error.

▶ ResNets can train very deep networks (over 150 layers).

from official.vision.keras_layers import ResidualBlock

model = tf.keras.Sequential([

tf.keras.Input(shape=(224, 224, 3)),

ResidualBlock(filters=64, strides=1),

tf.keras.layers.GlobalAveragePooling2D(),

tf.keras.layers.Dense(10, activation='softmax')
])

aKaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.
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Autoencoders

▶ Bottleneck architecture: An encoder that reduces the data dimensions and a
decoder that reconstructs the data from the reduced dimensions2.

▶ Unsupervised method that learns efficient encodings of the input data.

▶ Equivalent to PCA if encoder and decoder are linear models.

> example03_autoencoder.ipynb

2Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of data with neural
networks”. In: Science 313.5786 (2006), pp. 504–507.
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Recurrent Neural Networks (RNNs)

▶ Designed to process sequences. They remember information from previous inputs.

▶ Training uses “Backpropagation Through Time”, which unfolds the network
through time and then propagating errors back through these unfolded steps.

▶ Best-known RNN: Long short-term memory (LSTM)3.

model = tf.keras.Sequential([

tf.keras.layers.LSTM(50,

return_sequences=True,

input_shape=(100, 1)),

tf.keras.layers.LSTM(50),

tf.keras.layers.Dense(1)

]) Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

3Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.
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Key takeaways

1. Neurons: building blocks with nonlinear activation functions

2. Neural networks: optimization through back-propagation

3. DNN in practice: adaptive learning, mini-batches, regularization

4. CNN for computer vision: classification, object detection, segmentation, . . .

5. A diverse range of deep learning architectures can be assembled using these
fundamental building blocks.
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Web references

[1 ] MIT 6.S191 Introduction to Deep Learning
http://introtodeeplearning.com/

[2 ] Shervine Amidi’s Machine Learning tips and tricks cheatsheet
https://stanford.edu/~shervine/teaching/cs-229/

cheatsheet-machine-learning-tips-and-tricks

[3 ] Openframeworks https://openframeworks.cc/ofBook/chapters/image_
processing_computer_vision.html
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