Deep learning algorithm to detect coronary artery tortuosity in coronary angiography

Miriam Cobo Cano1 (FPU21/04458)

cobocano@ifca.unican.es

Francisco Pérez-Rojas1,4, Constanza Gutiérrez-Rodríguez2, Ignacio Heredia1, Patricio Maragaño-Lizama1, Francisca Yung-Manriquez2, José A. Vega2,4, Lara Lloret Iglesias1

1Institute of Physics of Cantabria (CSIC-UC); 2Autonomous University of Chile; 3Talca Regional Hospital; 4University of Oviedo

CHALLENGE

- Coronary artery tortuosity (CAT) is often an undetected condition in patients undergoing coronary angiography (CAG).
- Detailed knowledge of the morphology of coronary arteries is essential for planning any interventional treatment.
- Objective: develop a deep learning (DL) algorithm capable of automatically detecting CAT in CAG. Assess the performance of the DL algorithm against independent experts’ radiological visual examination (RVE).
- Result: DL had comparable sensitivity and specificity with RVE for detecting CAT for a conservative threshold of 0.5. Promising applications in the field of cardiology and medical imaging.

METHODS

The experimental dataset collected for this retrospective clinical study consisted of 658 CAG images, corresponding to 401 different patients.

5-fold cross-validation models comprised the DL algorithm. Images were randomly selected (450 for training, 46 validation, 48 testing).

RESULTS & DISCUSSION

<table>
<thead>
<tr>
<th>Projection</th>
<th># patients with coronary artery tortuosity</th>
<th># patients without coronary artery tortuosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left or Spider</td>
<td>182</td>
<td>217</td>
</tr>
<tr>
<td>Right or 45°/0°</td>
<td>52</td>
<td>207</td>
</tr>
</tbody>
</table>

Table 1. Available images for each angiographic projection.

- 5-fold cross-validation models comprised the DL algorithm. Images were randomly selected (450 for training, 46 validation, 48 testing).

Figure 1. Proposed convolutional neural network architecture for CAT detection.

Figure 2. Saliency maps examples of left (Spider) coronary angiographies.

- a-b. Patient with coronary artery tortuosity. Predicted labels: tortuous (99.8%), non-tortuous (0.2%).
- c-d. Patient without coronary artery tortuosity. Predicted labels: non-tortuous (92.5%), tortuous (7.5%).

Figure 3. Saliency maps examples of right (45°/ 0°) coronary angiographies.

- a-b. Patient with coronary artery tortuosity. Predicted labels: tortuous (83.9%), non-tortuous (16.1%).
- c-d. Patient without coronary artery tortuosity. Predicted labels: non-tortuous (98.9%), tortuous (1.1%).

Table 1. Classification metrics for detecting CAT in CAG with DL and RVE.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mean (DL models)</th>
<th>SD (DL models)</th>
<th>Mean (RVE)</th>
<th>SD (RVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.87</td>
<td>0.06</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.87</td>
<td>0.10</td>
<td>0.84</td>
<td>0.02</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.88</td>
<td>0.10</td>
<td>0.86</td>
<td>0.04</td>
</tr>
<tr>
<td>PPV</td>
<td>0.89</td>
<td>0.08</td>
<td>0.87</td>
<td>0.05</td>
</tr>
<tr>
<td>NPV</td>
<td>0.88</td>
<td>0.09</td>
<td>0.84</td>
<td>0.02</td>
</tr>
<tr>
<td>F1</td>
<td>0.87</td>
<td>0.07</td>
<td>0.85</td>
<td>0.03</td>
</tr>
<tr>
<td>AUC</td>
<td>0.96</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

- The DL algorithm can screen to provide the likelihood of a patient being diagnosed with CAT by adapting its threshold.
- Beneficial impact on preventing cardiac lesions, shortening CAG examination times, establishing vascular risks and improving future treatment strategies.

REFERENCES