Sustainability in Multi-Agent Systems

Filippo Bistaffa (IIIA-CSIC)

July 6-7, 2022

Computational Sustainability via Cooperation

Team Formation

Collective Energy Purchasing

Shared Mobility

Formation of Optimal Collectives

Computational Sustainability via Cooperation

Team Formation

Collective Energy Purchasing

Shared Mobility

Formation of Optimal Collectives

Constrained Optimisation for Sustainability

Constrained Optimisation as Theoretical Framework

Constrained optimisation (fundamental area of Al) used as technique to achieve computational sustainability via optimal collective formation

Challenge in Real-World Scenarios

The number of possible collectives is *exponential* ("curse of dimensionality"), so large-scale optimisation problems are *computationally very hard* to solve

Agenda

9 July 6, 14:30 − 15:30:

Theoretical Foundations of Constrained Optimisation in MAS

Practical Applications of Constrained Optimisation in MAS

9 July 7, 9:30 − 10:30:

Google Colab Hands-On Session

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions

Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge)

Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

Single-Item Auctions

Winner Determination Problem (WDP)

Objective

Given a set of bids, allocate the good to the bidder whose bid *maximises* the auctioneer's revenue

WDPs for Single-Item Auctions are Easy

- English: last bid wins
- Japanese: last remaining bidder wins
- Dutch: first bid wins

Multi-Unit Auctions

WDP for Multi-Unit Auctions

Example of a Multi-Unit Auction

We want to sell 15 apples maximising the revenue

What it the Optimal Allocation with these Bids?

- B: buy 2 apples for 2€
- C: buy 1 apple for 2€
- D: buy 1 apple for 1€
- E: buy 4 apples for 10€

$$(0,0,0,0) = 4 \in$$

$$[V_B(\{\mathbf{\bullet}^{\mathbf{o}},\mathbf{\bullet}^{\mathbf{o}}\})=2\mathbf{\in}]$$

$$[V_C(\{\bullet)\})=2 \in]$$

$$[V_D(\{\bullet\}) = 1 \in]$$

$$[V_E(\{\mathbf{\bullet},\mathbf{\bullet},\mathbf{\bullet},\mathbf{\bullet}\})=10\mathbf{\in}]$$

- Let x_A, x_B, x_C, x_D, x_E be decision variables [One binary variable for each bid]
- Maximise the revenue obtained by filling the backpack

Integer *Linear* Programming (ILP) Formulation

```
maximise 4 \cdot x_A + 2 \cdot x_B + 2 \cdot x_C + x_D + 10 \cdot x_E [Values of accepted bids] subject to 12 \cdot x_A + 2 \cdot x_B + x_C + x_D + 4 \cdot x_E \le 15 ["Capacity" constraint] x_A, x_B, x_C, x_D, x_E \in \{0, 1\} [Binary decision variables]
```

- Let x_A, x_B, x_C, x_D, x_E be decision variables [One binary variable for each bid]
- Maximise the revenue obtained by filling the backpack

Integer *Linear* Programming (ILP) Formulatior

```
maximise 4 \cdot x_A + 2 \cdot x_B + 2 \cdot x_C + x_D + 10 \cdot x_E [Values of accepted bids] subject to 12 \cdot x_A + 2 \cdot x_B + x_C + x_D + 4 \cdot x_E \le 15 ["Capacity" constraint] x_A, x_B, x_C, x_D, x_E \in \{0, 1\} [Binary decision variables]
```

- Let x_A, x_B, x_C, x_D, x_E be decision variables [One binary variable for each bid]
- Maximise the revenue obtained by filling the backpack

Integer *Linear* Programming (ILP) Formulation

```
maximise 4 \cdot x_A + 2 \cdot x_B + 2 \cdot x_C + x_D + 10 \cdot x_E [Values of accepted bids] subject to 12 \cdot x_A + 2 \cdot x_B + x_C + x_D + 4 \cdot x_E \le 15 ["Capacity" constraint] x_A, x_B, x_C, x_D, x_E \in \{0, 1\} [Binary decision variables]
```

- Let x_A, x_B, x_C, x_D, x_E be decision variables [One binary variable for each bid]
- Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

```
maximise 4 \cdot x_A + 2 \cdot x_B + 2 \cdot x_C + x_D + 10 \cdot x_E [Values of accepted bids] subject to 12 \cdot x_A + 2 \cdot x_B + x_C + x_D + 4 \cdot x_E \le 15 ["Capacity" constraint] x_A, x_B, x_C, x_D, x_E \in \{0, 1\} [Binary decision variables]
```


- $V_{\mathbf{A}}(\{\mathbf{\diamondsuit}\}) = 0 \in$
- $V_{\bigcirc}(\{\heartsuit, \succeq\}) = 400 \in$
- V₂({[↑]}) = 100€
- $V_{\bullet}(\{ ?, \circlearrowleft, \underline{\Rightarrow} \}) = 450 \in$

- $V_{\mathbf{A}}(\{\mathbf{?}\}) = 0 \in$
- V₂({♂}) = 100€
- $V_{\mathbf{Q}}(\{\mathbf{\heartsuit}, \mathbf{\circlearrowleft}, \mathbf{\overset{\square}{\square}}\}) = 450 \in$

- $V_{\mathbf{A}}(\{\mathbf{?}\}) = 0 \in$
- V_♠({¬, '•'}) = 400€
- $V_{\bullet}(\{ \buildrel \bui$
- $V_{\Omega}(\{\heartsuit, \circlearrowleft, \red{\diamond}\}) = 450 \in$

- $V_{\mathbf{A}}(\{\mathbf{?}\}) = 0 \in$
- $V_{\mathbf{A}}(\{\mathbf{?},\mathbf{'}\}) = 400 \in$
- *V*₂({[↑]}) = 100€
- $V_{\mathbf{Q}}(\{\mathbf{\heartsuit}, \mathbf{\circlearrowleft}, \mathbf{\overset{\bullet}{\bowtie}}\}) = 450 \in$

- $V_{\mathbf{A}}(\{\mathbf{?}\}) = 0 \in$
- $V_{\bigcirc}(\{\heartsuit, \succeq\}) = 400 \in$
- $V_{\mathbf{2}}(\{ \circlearrowleft \}) = 100 \in$
- V₂({⟨¬, ○, '∞⟩) = 450€

- $V_{\mathbf{A}}(\{\mathbf{\diamondsuit}\}) = 0 \in$
- V_♠({¬, '\'\'\'}) = 400€
- $V_{\bullet}(\{ \buildrel \bullet \}) = 100 \ensuremath{\in}$
- *V*₂({**⋄**, ⋄, <u>*</u>}) = 450€

WDP as Weighted Set Packing (WSP) Problem

- Given a set N of items and a set S of bids, let M be a $|N| \times |S|$ matrix
- $M_{iS} = 1$ if and only if item $i \in N$ is part of bid $S \in S$, $M_{iS} = 0$ otherwise

Weighted Set Packing (WSP) Problem

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

ILP Formulation for WSP

maximise
$$\sum_{S \in \mathcal{S}} x_S \cdot V(S)$$
 [Value of each active bid] subject to $\sum_{S \in \mathcal{S}} M_{iS} \cdot x_S = 1 \quad \forall i \in \mathbb{N}$ [All items must be sold] $\sum_{S \in \mathcal{S}} M_{iS} \cdot x_S \leq 1 \quad \forall i \in \mathbb{N}$ [Items can remain unsold]

Weighted Set Packing (WSP) Problem

$$M = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

ILP Formulation for WSP

maximise
$$\sum_{S \in \mathcal{S}} x_S \cdot V(S)$$
 [Value of each active bid] subject to $\sum_{S \in \mathcal{S}} M_{iS} \cdot x_S = 1 \quad \forall i \in \mathbb{N}$ [All items must be sold] $\sum_{S \in \mathcal{S}} M_{iS} \cdot x_S \leq 1 \quad \forall i \in \mathbb{N}$ [Items can remain unsold]

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions

Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

Set of Agents A

$$A = \{ a, a, b, b \}$$

Characteristic Function $v(\cdot)$

```
• v(\{a, a\}) = 0
```

•
$$v(\{2, 2, 3, 1\}) = -7$$

•
$$v(\{a, a\}) = 3$$

• ..

Set of Agents A

$$\mathcal{A} = \{ \clubsuit, \red{2}, \red{2}, \red{3} \}$$

Characteristic Function $v(\cdot)$

•
$$v(\{2, 2, 3, 1\}) = -7$$

•
$$v(\{a, 3\}) = 3$$

• . . .

Set of Agents *A*

$$A = \{ \mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A} \}$$

Characteristic Function $v(\cdot)$

```
• v(\{3, 2\}) = 0
• v(\{2, 2, 2\}) = -7
• v(\{3, 2\}) = 3
```

• . .

Set of Agents A

$$A = \{ \textcircled{A}, \textcircled{2}, \textcircled{2}, \textcircled{8} \}$$

Characteristic Function $v(\cdot)$

- $v(\{ {\bf A}, {\bf Q} \}) = 0$
- $v(\{\$, \$, \$\}) = -7$
- $v(\{a, 3\}) = 3$
- . . .

Set of Agents A

$$A = \{ \mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A} \}$$

Characteristic Function $v(\cdot)$

- $v(\{\{\{\{a,a\}\}\}) = 0$
- $v(\{2, 3, 3, 1\}) = -7$
- $v(\{a, a\}) = 3$

• . . .

Set of Agents *A*

$$A = \{ 3, 2, 3, 3 \}$$

Characteristic Function $v(\cdot)$

```
• v(\{ \{ \{ \{ \}, \{ \} \} \}) = 0
```

•
$$v(\{2, 2, 3, 1\}) = -7$$

•
$$v(\{\{\{0,1\}\}\})=3$$

• . . .

$$A = \{ \mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A}, \mathbf{A} \}$$

•
$$v(\{ 3, 2 \}) = 0$$

• $v(\{ 2, 2, 2 \}) = -7$
• $v(\{ 3, 2 \}) = 3$

• ...

Coalition Structure Generation (CSG) \approx WDP for CFGs

Objective of Coalition Structure Generation

Compute the *partition* of A that *maximises* the sum of the corresponding values

ILP Formulation for Coalition Structure Generation

maximise
$$\sum_{S \in \mathcal{S}} x_S \cdot V(S)$$
 [Value of each selected coalition] subject to $\sum_{S \in \mathcal{S}} M_{iS} \cdot x_S = 1 \quad \forall i \in N$ [Each agent in *one* coalition]

Coalition Structure Generation (CSG) \approx WDP for CFGs

- Given A and a set S of *coalitions* (i.e., subsets) of A, let M be a $|A| \times |S|$ matrix
- $M_{iS} = 1$ if and only if agent $a \in A$ is part of coalition $S \in S$, $M_{iS} = 0$ otherwise

Characteristic Function

Characteristic Function

The function $v : \mathcal{P}(A) \to \mathbb{R}$ associates a value to *every coalition* (i.e., subset) of *A*

Exponential Complexity

Representing $v(\cdot)$ as a *table* requires an *exponential* number of steps (i.e., $2^{|A|}$)

Mitigate this Complexity

(1) Restrict the set of coalitions or (2) consider $v(\cdot)$ with a specific structure

Cardinality-Restricted CFGs

Maximum Cardinality k

E.g., only coalitions of size \leq 3 are feasible

Polynomial Number of Coalitions

Total number of coalitions is $\sum_{i=1}^{k} {|A| \choose i} = \mathcal{O}(|A|^k)$, i.e., *polynomial wrt* |A|

Cardinality-Restricted CFGs

Maximum Cardinality k

E.g., only coalitions of size \leq 3 are feasible

Polynomial Number of Coalitions

Total number of coalitions is $\sum_{i=1}^{k} {|A| \choose i} = \mathcal{O}(|A|^k)$, i.e., *polynomial wrt* |A|

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session Induced Subgraph Games Approximately Equivalent ISGs

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge)

Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

What is Ridesharing for Us?

Arrange *shared rides* (coalitions) among users that submit *real-time* requests, with the objective of *maximising* a given *utility measure* (e.g., cost / CO₂ reduction, etc.)

Ridesharing Solution Algorithm (Request Collection)

Incoming Requests

"I just issued a trip request"

Waiting Trip Requests

"I am waiting to share my ride"

Example of a Ridesharing Request

"I want to go from point *i* to point *j*, and I am willing to wait δ minutes to be picked up by somebody (d = false) / before I leave with my own car (d = true)"

• $r = \langle i, j, d, \delta \rangle$

- [A ridesharing request is a tuple *r*]
- $r \in R_t$ [The system receives a set R_t of requests at each time step t]
- $\langle R_1, \dots, R_t, \dots, R_h \rangle$ [Sequence of inputs over a time horizon h]
- The input sequence is *not known a priori* [Online optimisation problem]

Example of a Ridesharing Request

"I want to go from point i to point j, and I am willing to wait δ minutes to be picked up by somebody (d = false) / before I leave with my own car (d = true)"

• $r = \langle i, j, d, \delta \rangle$

- [A ridesharing request is a tuple r]
- $r \in R_t$ [The system receives a set R_t of requests at each time step t]
- $\langle R_1, \ldots, R_t, \ldots, R_h \rangle$ [Sequence of inputs over a time horizon h]
- The input sequence is *not known a priori* [Online optimisation problem]

Example of a Ridesharing Request

"I want to go from point i to point j, and I am willing to wait δ minutes to be picked up by somebody (d = false) / before I leave with my own car (d = true)"

• $r = \langle i, j, d, \delta \rangle$

[A ridesharing request is a tuple r]

- $r \in R_t$
- [The system receives a set R_t of requests at each time step t]
 - $\langle R_1, \ldots, R_t, \ldots, R_h \rangle$

- The input sequence is *not known a priori* [Online optimisation problem]

Example of a Ridesharing Request

"I want to go from point i to point j, and I am willing to wait δ minutes to be picked up by somebody (d = false) / before I leave with my own car (d = true)"

• $r = \langle i, j, d, \delta \rangle$

- [A ridesharing request is a tuple r]
- $r \in R_t$ [The system receives a set R_t of requests at each time step t]
- $\langle R_1, \dots, R_t, \dots, R_h \rangle$ [Sequence of inputs over a time horizon h]
- The input sequence is *not known a priori* [Online optimisation problem]

Example of a Ridesharing Request

"I want to go from point i to point j, and I am willing to wait δ minutes to be picked up by somebody (d = false) / before I leave with my own car (d = true)"

• $r = \langle i, j, d, \delta \rangle$

- [A ridesharing request is a tuple *r*]
- $r \in R_t$ [The system receives a set R_t of requests at each time step t]
- $\langle R_1, \dots, R_t, \dots, R_h \rangle$ [Sequence of inputs over a time horizon h]
- The input sequence is *not known a priori* [Online optimisation problem]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \dots$$

• $\mathcal{F}(R) = \{ S \in 2^R \mid F(S) \}$ [Set of feasible coalitions from a set R of requests]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \dots$$

• $\mathcal{F}(R) = \{ S \in 2^R \mid F(S) \}$ [Set of feasible coalitions from a set R of requests]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

• . . .

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \dots$$

• $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$ [Set of feasible coalitions from a set R of requests]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \dots$$

• $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$ [Set of feasible coalitions from a set R of requests]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

. , --

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \dots$$

• $\mathcal{F}(R) = \{ S \in 2^R \mid F(S) \}$ [Set of feasible coalitions from a set R of requests]

• $|S| \leq k$

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

• ...

[Some other constraints]

$$F(S) = |S| \leq k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \geq \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \ldots$$

• $\mathcal{F}(R) = \{ S \in 2^R \mid F(S) \}$ [Set of feasible coalitions from a set R of requests]

• |S| < k

- [Maximum cardinality constraint]
- $\min_{r_{\alpha} \in S} (t_{\alpha} + \delta_{\alpha}) \ge \max_{r_{\beta} \in S} t_{\beta}$ [Earliest req. in the pool when latest arrives]
- $\bigvee_{r_{\gamma} \in S} d_{\gamma}$

[At least one driver]

• ...

[Some other constraints]

$$F(S) = |S| \le k \wedge \min_{r_{\alpha} \in S} t_{\alpha} + \delta_{\alpha} \ge \max_{r_{\beta} \in S} t_{\beta} \wedge \bigvee_{r_{\gamma} \in S} d_{\gamma} \wedge \ldots$$

• $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$ [Set of feasible coalitions from a set R of requests]

• The *value* (utility) of a coalition *S* is defined as:

$$V(S) = \overbrace{\rho_{\text{CO}_2} \cdot E_{\text{CO}_2}(S) + \rho_{\text{noise}} \cdot E_{\text{noise}}(S) + \rho_{\text{traffic}} \cdot E_{\text{traffic}}(S)}^{\text{environmental benefits}} + \overbrace{\rho_{\text{QoS}} \cdot Q(S)}^{\text{quality of service}}$$

•
$$E_{\text{CO}_2}(S) = E_{\text{noise}}(S) = |S| \cdot \frac{\sum_{r \in S} d(\{r\}) - d(S)}{\sum_{r \in S} d(\{r\})}$$
 [Proportional to travelled distance]

•
$$E_{\text{traffic}}(S) = |S| - 1$$

[Number of cars that have been avoided]

•
$$Q(S) = -\sum_{r \in S} \overbrace{t_r - t_r^*}^{t_r}$$

• The *value* (utility) of a coalition *S* is defined as:

$$V(S) = \overbrace{\rho_{\text{CO}_2} \cdot E_{\text{CO}_2}(S) + \rho_{\text{noise}} \cdot E_{\text{noise}}(S) + \rho_{\text{traffic}} \cdot E_{\text{traffic}}(S)}^{\text{environmental benefits}} + \overbrace{\rho_{\text{QoS}} \cdot Q(S)}^{\text{quality of service}}$$

•
$$E_{\text{CO}_2}(S) = E_{\text{noise}}(S) = |S| \cdot \frac{\sum_{r \in S} d(\{r\}) - d(S)}{\sum_{r \in S} d(\{r\})}$$
 [Proportional to travelled distance]

•
$$E_{\text{traffic}}(S) = |S| - 1$$

[Number of cars that have been avoided]

•
$$Q(S) = -\sum_{r \in S} \overbrace{t_r - t_r^*}^{t_r}$$

• The *value* (utility) of a coalition *S* is defined as:

$$V(S) = \overbrace{\rho_{\text{CO}_2} \cdot E_{\text{CO}_2}(S) + \rho_{\text{noise}} \cdot E_{\text{noise}}(S) + \rho_{\text{traffic}} \cdot E_{\text{traffic}}(S)}^{\text{environmental benefits}} + \overbrace{\rho_{\text{QoS}} \cdot Q(S)}^{\text{quality of service}}$$

- $E_{\text{CO}_2}(S) = E_{\text{noise}}(S) = |S| \cdot \frac{\sum_{r \in S} d(\{r\}) d(S)}{\sum_{r \in S} d(\{r\})}$ [Proportional to travelled distance]
- $E_{\text{traffic}}(S) = |S| 1$

[Number of cars that have been avoided]

•
$$Q(S) = -\sum_{r \in S} \underbrace{t_r - t_r^*}_{t_r}$$

• The *value* (utility) of a coalition *S* is defined as:

$$V(S) = \overbrace{\rho_{\text{CO}_2} \cdot E_{\text{CO}_2}(S) + \rho_{\text{noise}} \cdot E_{\text{noise}}(S) + \rho_{\text{traffic}} \cdot E_{\text{traffic}}(S)}^{\text{environmental benefits}} + \overbrace{\rho_{\text{QoS}} \cdot Q(S)}^{\text{quality of service}}$$

- $E_{\text{CO}_2}(S) = E_{\text{noise}}(S) = |S| \cdot \frac{\sum_{r \in S} d(\{r\}) d(S)}{\sum_{r \in S} d(\{r\})}$ [Proportional to travelled distance]
- $E_{\text{traffic}}(S) = |S| 1$

[Number of cars that have been avoided]

•
$$Q(S) = -\sum_{r \in S} \overbrace{t_r - t_r^*}^{t_r}$$

- Assume that $\langle R_1, \dots, R_t, \dots, R_h \rangle$ is *fully known a priori* [Offline problem]
- Let $R^{\cup} = \bigcup_{t=1}^{h} R_t$ [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
$$\sum_{S \in \mathcal{F}(R^{\cup})} x_S \cdot V(S)$$
 [Weighted set packing such that $x_S + x_{S'} \leq 1 \quad \forall \ \mathcal{F}(R^{\cup}) : S \cap S' \neq \emptyset$

- Assume that $\langle R_1, \dots, R_t, \dots, R_h \rangle$ is *fully known a priori* [Offline problem]
- Let $R^{\cup} = \bigcup_{t=1}^{h} R_t$ [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
$$\sum_{S \in \mathcal{F}(R^{\cup})} x_S \cdot V(S)$$
 [Weighted:

such that $x_S + x_{S'} \le 1 \quad \forall \ \mathcal{F}(R^{\cup}) : S \cap S' \neq \emptyset$

- Assume that $\langle R_1, \dots, R_t, \dots, R_h \rangle$ is *fully known a priori* [Offline problem]
- Let $R^{\cup} = \bigcup_{t=1}^{h} R_t$ [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
$$\sum_{S \in \mathcal{F}(R^{\cup})} x_S \cdot V(S)$$
 [Weighted set packing] such that $x_S + x_{S'} \leq 1 \quad \forall \ \mathcal{F}(R^{\cup}) : S \cap S' \neq \emptyset$

- Assume that $\langle R_1, \dots, R_t, \dots, R_h \rangle$ is *fully known a priori* [Offline problem]
- Let $R^{\cup} = \bigcup_{t=1}^{h} R_t$ [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
$$\sum_{S \in \mathcal{F}(R^{\cup})} x_S \cdot V(S)$$
 [Weighted set packing] such that
$$x_S + x_{S'} \le 1 \quad \forall \ \mathcal{F}(R^{\cup}) : S \cap S' \neq \emptyset$$

29 of 57

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

- Recall that $\mathcal{F}(R) = \{S \in 2^R \mid F(S)\}$
- With $|S| \le k$, $|\mathcal{F}(R)| \le \sum_{i=1}^k {|R| \choose i}$, i.e., $\mathcal{O}(|R|^k)$ [Polynomial complexity]
- In practice, $|R_t|$ can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem

Enumerating all coalitions in $\mathcal{F}(R)$ is impractical, especially in realistic application scenarios with *very limited time budget* for the solution

Our Solution

Ridesharing Solution Algorithm (Candidate Generation)

- CO₂ emissions
- ★ Acoustic pollution
- # Traffic congestion
- Quality of service

20 seconds

Probabilistic Greedy Algorithm

Candidate Cars

Ridesharing Solution Algorithm (ILP Optimisation)

Solution

Approximated ILP Formulation

maximise
$$\sum_{S \in \hat{\mathcal{F}}(R^{\cup})} x_S \cdot V(S)$$
 [Only good candidates] such that $x_S + x_{S'} \le 1 \quad \forall \; \hat{\mathcal{F}}(R^{\cup}) : S \cap S' \neq \emptyset$

Computational Advantage

Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions

Approximated solutions have a quality that is > 95% of the optimal one

Approximated ILP Formulation

maximise
$$\sum_{S \in \hat{\mathcal{F}}(R^{\cup})} x_S \cdot V(S)$$
 [Only good candidates] such that $x_S + x_{S'} \le 1 \quad \forall \; \hat{\mathcal{F}}(R^{\cup}) : S \cap S' \neq \emptyset$

Computational Advantage

Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions

Approximated solutions have a quality that is > 95% of the optimal one

Approximated ILP Formulation

maximise
$$\sum_{S \in \hat{\mathcal{F}}(R^{\cup})} x_S \cdot V(S)$$
 [Only good candidates] such that
$$x_S + x_{S'} \le 1 \quad \forall \ \hat{\mathcal{F}}(R^{\cup}) : S \cap S' \neq \emptyset$$

Computational Advantage

Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions

Approximated solutions have a quality that is > 95% of the optimal one

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge)

Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

What is Team Formation for Us?

Partition a classroom A into proficient and congenial teams of size $k [|A| = m \cdot k]$

Input of the Optimisation Problem

Student Representation

- $g \in \{\text{man}, \text{woman}\}\$ stands for the student's gender
- $p \in [-1, 1]^4$ is a *personality profile* with 4 personality traits

[Congeniality]

• $l: C \rightarrow [0, 1]$ gives the student's level l(c) for competence $c \in C$

Task Representation (Same for all Teams)

A task τ requires a *competence level* met by at least one student

[Proficiency]

Input of the Optimisation Problem

Student Representation

- $g \in \{\text{man}, \text{woman}\}$ stands for the student's gender
- $p \in [-1, 1]^4$ is a *personality profile* with 4 personality traits

[Congeniality]

• $l: C \rightarrow [0, 1]$ gives the student's level l(c) for competence $c \in C$

Task Representation (Same for all Teams)

A task τ requires a *competence level* met by at least one student

[Proficiency]

Input of the Optimisation Problem

Student Representation

- $g \in \{\text{man}, \text{woman}\}$ stands for the student's gender
- $p \in [-1, 1]^4$ is a *personality profile* with 4 personality traits

[Congeniality]

• $l: C \rightarrow [0, 1]$ gives the student's level l(c) for competence $c \in C$

Task Representation (Same for all Teams)

A task τ requires a *competence level* met by at least one student

[Proficiency]

Value V(S) of a Team S given a Task τ

• The *value* (utility) of a team $S \in [A]^k$ given a task τ is defined as:

$$V(S, \tau) = \lambda \cdot \underbrace{U_{\text{prof}}(S, \tau)}_{\text{prof}} + (1 - \lambda) \cdot \underbrace{U_{\text{cong}}(S)}_{\text{cong}}$$
 [$\lambda = \text{proficiency importance}$]

• Given a partition S of A into teams of size k, the value of S is defined as:

$$V(S, \tau) = \prod_{S \in S} V(S, \tau)$$
 [Bernoulli-Nash product]

Value V(S) of a Team S given a Task τ

• The *value* (utility) of a team $S \in [A]^k$ given a task τ is defined as:

$$V(S, \tau) = \lambda \cdot \underbrace{U_{\text{prof}}(S, \tau)}_{\text{prof}} + (1 - \lambda) \cdot \underbrace{U_{\text{cong}}(S)}_{\text{cong}}$$
 [$\lambda = \text{proficiency importance}$]

• Given a partition S of A into teams of size k, the value of S is defined as:

$$V(S, \tau) = \prod_{S \in S} V(S, \tau)$$
 [Bernoulli-Nash product]

Non-linear IP Formulation

maximise
$$\prod_{S \in [A]^k} V(S, \tau)^{x_S} \qquad [V(S, \tau)^{x_S} = V(S, \tau) \text{ if } x_S = 1, 1 \text{ otherwise}]$$
subject to
$$\sum_{S \in [A]^k} x_S = m \qquad \qquad [\text{Partition of exactly } m \text{ teams}]$$

$$\sum_{S \in [A]^k} \underbrace{M_{iS}}_{i \in S} \cdot x_S = 1 \quad \forall i \in A \qquad [\text{No overlapping teams}]$$

Modelling Problem

 $\prod_{S \in [A]^k} V(S, \tau)^{x_S}$ is *not* a linear function, cannot be solved with ILP solvers

Non-linear IP Formulation

maximise
$$\prod_{S \in [A]^k} V(S, \tau)^{x_S} \qquad [V(S, \tau)^{x_S} = V(S, \tau) \text{ if } x_S = 1, 1 \text{ otherwise}]$$
subject to
$$\sum_{S \in [A]^k} x_S = m \qquad \qquad [\text{Partition of exactly } m \text{ teams}]$$

$$\sum_{S \in [A]^k} \underbrace{\mathcal{M}_{iS}}_{i \in S} \cdot x_S = 1 \quad \forall i \in A \qquad [\text{No overlapping teams}]$$

Modelling Problem

 $\prod_{S \in IAl^k} V(S, \tau)^{x_S}$ is *not* a linear function, cannot be solved with ILP solvers

Positive Monotonic Functions

Applying a *positive monotonic* (PM) function to the objective does *not* change the optimum, since the order among solutions is preserved

Question

Which PM function $g(\cdot)$ should I pick such that $g\left(\prod_{S\in[A]^k}V(S,\tau)^{x_S}\right)$ is linear?

Solution

- log is a PM function in the considered domain
- $\log \left(\prod_{S \in [A]^k} V(S, \tau)^{x_S} \right) = \sum_{S \in [A]^k} x_S \cdot \underbrace{\log(V(S, \tau))}_{\text{constant value}}$ [Linear objective function]

Positive Monotonic Functions

Applying a *positive monotonic* (PM) function to the objective does *not* change the optimum, since the order among solutions is preserved

Question

Which PM function $g(\cdot)$ should I pick such that $g\left(\prod_{S\in[A]^k}V(S,\tau)^{x_S}\right)$ is linear?

Solution

log is a PM function in the considered domain

•
$$\log \left(\prod_{S \in [A]^k} V(S, \tau)^{x_S} \right) = \sum_{S \in [A]^k} x_S \cdot \underbrace{\log(V(S, \tau))}_{\text{constant value}}$$
 [Linear objective function]

Positive Monotonic Functions

Applying a *positive monotonic* (PM) function to the objective does *not* change the optimum, since the order among solutions is preserved

Question

Which PM function $g(\cdot)$ should I pick such that $g(\prod_{S \in [A]^k} V(S, \tau)^{x_S})$ is linear?

Solution

- · log is a PM function in the considered domain
- $\log \left(\prod_{S \in [A]^k} V(S, \tau)^{x_S} \right) = \sum_{S \in [A]^k} x_S \cdot \underbrace{\log(V(S, \tau))}_{\text{constant value}}$ [Linear objective function]

Linearised ILP Formulation

maximise
$$\sum_{S \in [A]^k} x_S \cdot \log(V(S, \tau))$$

subject to $\sum_{S \in [A]^k} x_S = m$
 $\sum_{S \in [A]^k} M_{iS} \cdot x_S = 1 \quad \forall i \in A$

Further Reading

Andrejczuk et al., "Synergistic Team Composition: A Computational Approach to Foster Diversity in Teams", Knowledge-Based Systems, 2019

Linearised ILP Formulation

maximise
$$\sum_{S \in [A]^k} x_S \cdot \log(V(S, \tau))$$

subject to $\sum_{S \in [A]^k} x_S = m$
 $\sum_{S \in [A]^k} M_{iS} \cdot x_S = 1 \quad \forall i \in A$

Further Reading

Andrejczuk *et al.*, "Synergistic Team Composition: A Computational Approach to Foster Diversity in Teams", *Knowledge-Based Systems*, 2019

Further Reading

- Boyd and Vandenberghe, Convex Optimization, 2004
- Hentenryck and Bent, Online Stochastic Combinatorial Optimization, 2009
- Bistaffa et al., "A Computational Approach to Quantify the Benefits of Ridesharing for Policy Makers and Travellers", IEEE Transactions on Intelligent Transportation Systems, 2021
- Andrejczuk et al., "Synergistic Team Composition: A Computational Approach to Foster Diversity in Teams", Knowledge-Based Systems, 2019

See you tomorrow!

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games Approximately Equivalent ISGs

Google Colab Hands-On Session

- 1. Weighted Knapsack Problem https://bit.ly/aihub2022-wk
- Weighted Set Packing Problem https://bit.ly/aihub2022-wsp
- 3. Coalition Structure Generation https://bit.ly/aihub2022-csg
- 4. Approximately Equivalent ISG
 https://bit.ly/aihub2022-aeisg
- 5. CSG on ISGs as Graph Clustering https://bit.ly/aihub2022-gc

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games

Approximately Equivalent ISGs

Characteristic Function

Characteristic Function

The function $v : \mathcal{P}(A) \to \mathbb{R}$ associates a value to *every coalition* (i.e., subset) of *A*

Exponential Complexity

Representing $v(\cdot)$ as a *table* requires an *exponential* number of steps (i.e., $2^{|A|}$)

Mitigate this Complexity

(1) Restrict the set of coalitions or (2) consider $v(\cdot)$ with a specific structure

Weighted Graph *G* among Agents

$$G_w = (\{ \stackrel{\bullet}{\mathbb{A}}, \stackrel{\bullet}{\mathbb{Z}}, \stackrel{\bullet}{\mathbb{A}} \}, \{\underbrace{(\stackrel{\bullet}{\mathbb{A}}, \stackrel{\bullet}{\mathbb{A}})}_{2}, \underbrace{(\stackrel{\bullet}{\mathbb{A}}, \stackrel{\bullet}{\mathbb{A}})}_{3}, \underbrace{(\stackrel{\bullet}{\mathbb{A}}, \stackrel{\bullet}{\mathbb{A}})}_{1} \})$$

Value is the Sum of Induced Edges

$$v(\{\$, \$, \$\}) = 2 + 1 = 3$$

Weighted Graph *G* among Agents

$$G_w = (\{ \textcircled{A}, \textcircled{2}, \textcircled{3}, \textcircled{4} \}, \{ \underbrace{(\textcircled{A}, \textcircled{2})}_{2}, \underbrace{(\textcircled{2}, \textcircled{2})}_{3}, \underbrace{(\textcircled{3}, \textcircled{4})}_{1} \})$$

Value is the Sum of Induced Edges

$$v(\{\$, \$, \$\}) = 2 + 1 = 3$$

Succinct Game Representation

The characteristic function is *entirely* represented by the weighted graph G_w

Computational Advantages

CSG on ISGs can be treated as a *graph clustering* problem ("easier" than CSG)

Limited Representation Power

Not every characteristic function game can be perfectly represented as an ISG

Succinct Game Representation

The characteristic function is *entirely* represented by the weighted graph G_w

Computational Advantages

CSG on ISGs can be treated as a *graph clustering* problem ("easier" than CSG)

Limited Representation Power

Not every characteristic function game can be perfectly represented as an ISG

ISGs Cannot Represent Every CFG

$$v(S) = \begin{cases} 0, & \text{if } |S| = 1, \\ 1, & \text{if } |S| = 2, \\ 6, & \text{if } |S| = 3. \end{cases}$$

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS

Ridesharing (Computational Challenge) Team Formation (Modelling Challenge)

Google Colab Hands-On Session

Induced Subgraph Games
Approximately Equivalent ISGs

Can We Approximate a CFG as an ISG?

Approximately Equivalent ISG (AE-ISG)

Given a CFG C, compute the ISG that best approximates C, namely AE-ISG(C)

AE-ISG as Norm Approximation (ℓ_p Linear Regression)

minimise
$$\|\underline{\mathcal{M}w - v}\|_p$$

$$M = \begin{bmatrix} \vdots & \vdots & \vdots \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$v = \begin{bmatrix} v(\{2, 2, 3, 3\}) \\ v(\{3, 2, 3\}) \\ v(\{4, 2, 3, 3\}) \\ \vdots & \vdots & \vdots \end{bmatrix}$$

AE-ISG as Norm Approximation (ℓ_p Linear Regression)

minimise
$$\|\underbrace{\mathcal{M}w - v}_{\text{residuals}}\|_p$$

Residual Vector

The residual vector r = Mw - v is the vector of differences between approximated coalitional values (i.e., Mw) and original coalitional values (i.e., v)

Constrained Norm Approximation

Some coalitions (singletons) can be represented *exactly* via additional constraints

AE-ISG as Norm Approximation (ℓ_p Linear Regression)

Size of AE-ISG Model

Building M and v requires to go through the set of coalitional values (obviously)

Computational Complexity

If the set of feasible coalitions is *polynomial* (e.g., ridesharing), computing AE-ISG(C) has a *manageable* complexity, depending on the norm ℓ_p :

- $\ell_1/\ell_\infty \to \text{Linear Programming (exact, CPU)}$
- $\ell_2 \rightarrow$ Least Squares (exact/analytical, GPU)
- $\ell_{>2} \rightarrow$ Iteratively Reweighted Least Squares (numerical)

CSG on ISGs as Graph Clustering

CSG on ISGs Optimisation Objective

Maximise sum of of clusters' internal weights (namely, coverage measure)

CSG on ISGs as Graph Clustering

CSG on ISGs Optimisation Objective

Maximise sum of of *clusters' internal weights* (namely, *coverage* measure)

ILP for Optimal Graph Clustering

$$X_{ij} = 1 \rightarrow \text{edge } \{i, j\}$$
 is "activated" (*i* and *j* are in the same cluster)

Google Colab Hands-On Session

- 1. Weighted Knapsack Problem https://bit.ly/aihub2022-wk
- 2. Weighted Set Packing Problem https://bit.ly/aihub2022-wsp
- 3. Coalition Structure Generation https://bit.ly/aihub2022-csg
- 4. Approximately Equivalent ISG https://bit.ly/aihub2022-aeisg
- 5. CSG on ISGs as Graph Clustering https://bit.ly/aihub2022-gc