
Sustainability in Multi-Agent Systems

Filippo Bistaffa (IIIA-CSIC)

July 6-7, 2022

Computational Sustainability via Cooperation

Shared MobilityTeam Formation Collective Energy Purchasing

Formation of Optimal Collectives

2 of 57

Computational Sustainability via Cooperation

Shared MobilityTeam Formation Collective Energy Purchasing

Formation of Optimal Collectives

2 of 57

Constrained Optimisation for Sustainability

Constrained Optimisation as Theoretical Framework
Constrained optimisation (fundamental area of AI) used as technique to
achieve computational sustainability via optimal collective formation

Challenge in Real-World Scenarios
The number of possible collectives is exponential (“curse of dimensionality”),
so large-scale optimisation problems are computationally very hard to solve

3 of 57

Agenda

July 6, 14:30 – 15:30:

Theoretical Foundations of Constrained Optimisation in MAS

Practical Applications of Constrained Optimisation in MAS

July 7, 9:30 – 10:30:

Google Colab Hands-On Session

4 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

5 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

6 of 57

Single-Item Auctions

7 of 57

Winner Determination Problem (WDP)

Objective
Given a set of bids, allocate the good to the bidder whose bid maximises the
auctioneer’s revenue

WDPs for Single-Item Auctions are Easy
• English: last bid wins

• Japanese: last remaining bidder wins

• Dutch: first bid wins

8 of 57

Multi-Unit Auctions

9 of 57

WDP for Multi-Unit Auctions

Example of a Multi-Unit Auction
We want to sell 15 apples maximising the revenue

What it the Optimal Allocation with these Bids?
• A: buy 12 apples for 4e [VA({ , , , , , , , , , , , }) = 4e]
• B: buy 2 apples for 2e [VB({ , }) = 2e]
• C: buy 1 apple for 2e [VC({ }) = 2e]
• D: buy 1 apple for 1e [VD({ }) = 1e]
• E: buy 4 apples for 10e [VE({ , , , }) = 10e]

10 of 57

WDP as a Weighted Knapsack Problem

• Let xA, xB, xC, xD, xE be decision variables [One binary variable for each bid]

• Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

maximise 4 · xA + 2 · xB + 2 · xC + xD + 10 · xE [Values of accepted bids]

subject to 12 · xA + 2 · xB + xC + xD + 4 · xE ≤ 15 [“Capacity” constraint]

xA, xB, xC, xD, xE ∈ {0, 1} [Binary decision variables]

11 of 57

WDP as a Weighted Knapsack Problem

• Let xA, xB, xC, xD, xE be decision variables [One binary variable for each bid]

• Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

maximise 4 · xA + 2 · xB + 2 · xC + xD + 10 · xE [Values of accepted bids]

subject to 12 · xA + 2 · xB + xC + xD + 4 · xE ≤ 15 [“Capacity” constraint]

xA, xB, xC, xD, xE ∈ {0, 1} [Binary decision variables]

11 of 57

WDP as a Weighted Knapsack Problem

• Let xA, xB, xC, xD, xE be decision variables [One binary variable for each bid]

• Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

maximise 4 · xA + 2 · xB + 2 · xC + xD + 10 · xE [Values of accepted bids]

subject to 12 · xA + 2 · xB + xC + xD + 4 · xE ≤ 15 [“Capacity” constraint]

xA, xB, xC, xD, xE ∈ {0, 1} [Binary decision variables]

11 of 57

WDP as a Weighted Knapsack Problem

• Let xA, xB, xC, xD, xE be decision variables [One binary variable for each bid]

• Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

maximise 4 · xA + 2 · xB + 2 · xC + xD + 10 · xE [Values of accepted bids]

subject to 12 · xA + 2 · xB + xC + xD + 4 · xE ≤ 15 [“Capacity” constraint]

xA, xB, xC, xD, xE ∈ {0, 1} [Binary decision variables]

11 of 57

Multi-Item (Combinatorial) Auctions

12 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

Multi-Item (Combinatorial) Auctions

Multi-item bids
• V ({ }) = 0e

• V ({ , }) = 400e

• V ({ }) = 100e

• V ({ , , }) = 450e

13 of 57

WDP as Weighted Set Packing (WSP) Problem

• Given a set N of items and a set S of bids, let M be a |N | × |S| matrix

• MiS = 1 if and only if item i ∈ N is part of bid S ∈ S , MiS = 0 otherwise

M =
{

}

{
,

}

{
}

{
,

,
}


1 1 0 1

0 1 0 1

0 0 1 1

14 of 57

Weighted Set Packing (WSP) Problem

M =

1 1 0 1
0 1 0 1
0 0 1 1


ILP Formulation for WSP

maximise
∑

S∈S
xS · V (S) [Value of each active bid]

subject to
∑

S∈S
MiS · xS = 1 ∀i ∈ N [All items must be sold]∑

S∈S
MiS · xS ≤ 1 ∀i ∈ N [Items can remain unsold]

15 of 57

Weighted Set Packing (WSP) Problem

M =

1 1 0 1
0 1 0 1
0 0 1 1


ILP Formulation for WSP

maximise
∑

S∈S
xS · V (S) [Value of each active bid]

subject to
∑

S∈S
MiS · xS = 1 ∀i ∈ N [All items must be sold]∑

S∈S
MiS · xS ≤ 1 ∀i ∈ N [Items can remain unsold]

15 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

16 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Characteristic Function Games (CFGs)

Set of Agents A
A = { , , , }

Characteristic Function v(·)
• v({ , }) = 0
• v({ , , }) = −7
• v({ , }) = 3
• . . .

17 of 57

Coalition Structure Generation (CSG) ≈WDP for CFGs

Objective of Coalition Structure Generation
Compute the partition of A that maximises the sum of the corresponding values

ILP Formulation for Coalition Structure Generation

maximise
∑

S∈S
xS · V (S) [Value of each selected coalition]

subject to
∑

S∈S
MiS · xS = 1 ∀i ∈ N [Each agent in one coalition]

18 of 57

Coalition Structure Generation (CSG) ≈WDP for CFGs

• Given A and a set S of coalitions (i.e., subsets) of A, letM be a |A| × |S| matrix

• MiS = 1 if and only if agent a ∈ A is part of coalition S ∈ S ,MiS = 0 otherwise

M =

{
}

{
}

{
}

{
,

}

{
,

}

{
,

}

{
,

,
}


1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

19 of 57

Characteristic Function

Characteristic Function
The function v : P(A) → R associates a value to every coalition (i.e., subset) of A

Exponential Complexity
Representing v(·) as a table requires an exponential number of steps (i.e., 2|A|)

Mitigate this Complexity
(1) Restrict the set of coalitions or (2) consider v(·) with a specific structure

20 of 57

Cardinality-Restricted CFGs

Maximum Cardinality k
E.g., only coalitions of size ≤ 3 are feasible

Polynomial Number of Coalitions
Total number of coalitions is

∑k
i=1

(|A|
i

)
=

O(|A|k), i.e., polynomial wrt |A|

21 of 57

Cardinality-Restricted CFGs

Maximum Cardinality k
E.g., only coalitions of size ≤ 3 are feasible

Polynomial Number of Coalitions
Total number of coalitions is

∑k
i=1

(|A|
i

)
=

O(|A|k), i.e., polynomial wrt |A|

21 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

22 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

23 of 57

What is Ridesharing for Us?

Arrange shared rides (coalitions) among users that submit real-time requests, with
the objective of maximising a given utility measure (e.g., cost / CO2 reduction, etc.)

24 of 57

Ridesharing Solution Algorithm (Request Collection)

Incoming Requests

“I just issued a trip request”

Waiting Trip Requests

“I am waiting to share my ride”

25 of 57

Input of the Optimisation Problem

Example of a Ridesharing Request
“I want to go from point i to point j, and I am willing to wait δ minutes to be
picked up by somebody (d = false) / before I leave with my own car (d = true)”

• r = ⟨i, j, d, δ⟩ [A ridesharing request is a tuple r]

• r ∈ Rt [The system receives a set Rt of requests at each time step t]

• ⟨R1, . . . ,Rt , . . . ,Rh⟩ [Sequence of inputs over a time horizon h]

• The input sequence is not known a priori [Online optimisation problem]

26 of 57

Input of the Optimisation Problem

Example of a Ridesharing Request
“I want to go from point i to point j, and I am willing to wait δ minutes to be
picked up by somebody (d = false) / before I leave with my own car (d = true)”

• r = ⟨i, j, d, δ⟩ [A ridesharing request is a tuple r]

• r ∈ Rt [The system receives a set Rt of requests at each time step t]

• ⟨R1, . . . ,Rt , . . . ,Rh⟩ [Sequence of inputs over a time horizon h]

• The input sequence is not known a priori [Online optimisation problem]

26 of 57

Input of the Optimisation Problem

Example of a Ridesharing Request
“I want to go from point i to point j, and I am willing to wait δ minutes to be
picked up by somebody (d = false) / before I leave with my own car (d = true)”

• r = ⟨i, j, d, δ⟩ [A ridesharing request is a tuple r]

• r ∈ Rt [The system receives a set Rt of requests at each time step t]

• ⟨R1, . . . ,Rt , . . . ,Rh⟩ [Sequence of inputs over a time horizon h]

• The input sequence is not known a priori [Online optimisation problem]

26 of 57

Input of the Optimisation Problem

Example of a Ridesharing Request
“I want to go from point i to point j, and I am willing to wait δ minutes to be
picked up by somebody (d = false) / before I leave with my own car (d = true)”

• r = ⟨i, j, d, δ⟩ [A ridesharing request is a tuple r]

• r ∈ Rt [The system receives a set Rt of requests at each time step t]

• ⟨R1, . . . ,Rt , . . . ,Rh⟩ [Sequence of inputs over a time horizon h]

• The input sequence is not known a priori [Online optimisation problem]

26 of 57

Input of the Optimisation Problem

Example of a Ridesharing Request
“I want to go from point i to point j, and I am willing to wait δ minutes to be
picked up by somebody (d = false) / before I leave with my own car (d = true)”

• r = ⟨i, j, d, δ⟩ [A ridesharing request is a tuple r]

• r ∈ Rt [The system receives a set Rt of requests at each time step t]

• ⟨R1, . . . ,Rt , . . . ,Rh⟩ [Sequence of inputs over a time horizon h]

• The input sequence is not known a priori [Online optimisation problem]

26 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Feasible Coalition S of Requests (Car)

• |S| ≤ k [Maximum cardinality constraint]

• minrα∈S(tα + δα) ≥ maxrβ∈S tβ [Earliest req. in the pool when latest arrives]

•
∨

rγ∈S dγ [At least one driver]

• . . . [Some other constraints]

F (S) = |S| ≤ k ∧ min
rα∈S

tα + δα ≥ max
rβ∈S

tβ ∧
∨
rγ∈S

dγ ∧ . . .

• F(R) = {S ∈ 2R | F (S)} [Set of feasible coalitions from a set R of requests]

27 of 57

Value V (S) of a Feasible Coalition S

• The value (utility) of a coalition S is defined as:

V (S) =

environmental benefits︷ ︸︸ ︷
ρCO2 · ECO2(S) + ρnoise · Enoise(S) + ρtraffic · E traffic(S)+

quality of service︷ ︸︸ ︷
ρQoS · Q(S)

• ECO2(S) = Enoise(S) = |S| ·
∑

r∈S d({r})−d(S)∑
r∈S d({r})

[Proportional to travelled distance]

• E traffic(S) = |S| − 1 [Number of cars that have been avoided]

• Q(S) = −
∑

r∈S

in-car delay︷ ︸︸ ︷
tr − t∗r

tr
[Relative difference with optimal arrival time t∗r]

28 of 57

Value V (S) of a Feasible Coalition S

• The value (utility) of a coalition S is defined as:

V (S) =

environmental benefits︷ ︸︸ ︷
ρCO2 · ECO2(S) + ρnoise · Enoise(S) + ρtraffic · E traffic(S)+

quality of service︷ ︸︸ ︷
ρQoS · Q(S)

• ECO2(S) = Enoise(S) = |S| ·
∑

r∈S d({r})−d(S)∑
r∈S d({r})

[Proportional to travelled distance]

• E traffic(S) = |S| − 1 [Number of cars that have been avoided]

• Q(S) = −
∑

r∈S

in-car delay︷ ︸︸ ︷
tr − t∗r

tr
[Relative difference with optimal arrival time t∗r]

28 of 57

Value V (S) of a Feasible Coalition S

• The value (utility) of a coalition S is defined as:

V (S) =

environmental benefits︷ ︸︸ ︷
ρCO2 · ECO2(S) + ρnoise · Enoise(S) + ρtraffic · E traffic(S)+

quality of service︷ ︸︸ ︷
ρQoS · Q(S)

• ECO2(S) = Enoise(S) = |S| ·
∑

r∈S d({r})−d(S)∑
r∈S d({r})

[Proportional to travelled distance]

• E traffic(S) = |S| − 1 [Number of cars that have been avoided]

• Q(S) = −
∑

r∈S

in-car delay︷ ︸︸ ︷
tr − t∗r

tr
[Relative difference with optimal arrival time t∗r]

28 of 57

Value V (S) of a Feasible Coalition S

• The value (utility) of a coalition S is defined as:

V (S) =

environmental benefits︷ ︸︸ ︷
ρCO2 · ECO2(S) + ρnoise · Enoise(S) + ρtraffic · E traffic(S)+

quality of service︷ ︸︸ ︷
ρQoS · Q(S)

• ECO2(S) = Enoise(S) = |S| ·
∑

r∈S d({r})−d(S)∑
r∈S d({r})

[Proportional to travelled distance]

• E traffic(S) = |S| − 1 [Number of cars that have been avoided]

• Q(S) = −
∑

r∈S

in-car delay︷ ︸︸ ︷
tr − t∗r

tr
[Relative difference with optimal arrival time t∗r]

28 of 57

Optimal ILP Formulation

• Assume that ⟨R1, . . . ,Rt , . . . ,Rh⟩ is fully known a priori [Offline problem]

• Let R∪ =
⋃h

t=1 Rt [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
∑

S∈F(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F(R∪) : S ∩ S′ ̸= ∅
[Weighted set packing]

29 of 57

Optimal ILP Formulation

• Assume that ⟨R1, . . . ,Rt , . . . ,Rh⟩ is fully known a priori [Offline problem]

• Let R∪ =
⋃h

t=1 Rt [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
∑

S∈F(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F(R∪) : S ∩ S′ ̸= ∅
[Weighted set packing]

29 of 57

Optimal ILP Formulation

• Assume that ⟨R1, . . . ,Rt , . . . ,Rh⟩ is fully known a priori [Offline problem]

• Let R∪ =
⋃h

t=1 Rt [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
∑

S∈F(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F(R∪) : S ∩ S′ ̸= ∅
[Weighted set packing]

29 of 57

Optimal ILP Formulation

• Assume that ⟨R1, . . . ,Rt , . . . ,Rh⟩ is fully known a priori [Offline problem]

• Let R∪ =
⋃h

t=1 Rt [Set of all requests over the entire time horizon h]

Optimal ILP Formulation

maximise
∑

S∈F(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F(R∪) : S ∩ S′ ̸= ∅
[Weighted set packing]

29 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Curse of Dimensionality

• Recall that F(R) = {S ∈ 2R | F (S)}
• With |S| ≤ k, |F(R)| ≤

∑k
i=1

(|R|
i

)
, i.e., O(|R|k) [Polynomial complexity]

• In practice, |Rt | can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem
Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F̂(R) of good candidate coalitions instead of F(R)

30 of 57

Ridesharing Solution Algorithm (Candidate Generation)

, CO2 emissions

� Acoustic pollution

ö Traffic congestion

/ Quality of service

−−−−−−−−→

20 seconds

Probabilistic
Greedy

Algorithm

Candidate
Cars

31 of 57

Ridesharing Solution Algorithm (ILP Optimisation)

Good Candidates

−−−−−−−−→

40 seconds

Integer Linear
Programming

Solver

ILP
Solution

32 of 57

Approximated ILP Formulation

maximise
∑

S∈F̂(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F̂(R∪) : S ∩ S′ ̸= ∅
[Only good candidates]

Computational Advantage
Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions
Approximated solutions have a quality that is > 95% of the optimal one

33 of 57

Approximated ILP Formulation

maximise
∑

S∈F̂(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F̂(R∪) : S ∩ S′ ̸= ∅
[Only good candidates]

Computational Advantage
Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions
Approximated solutions have a quality that is > 95% of the optimal one

33 of 57

Approximated ILP Formulation

maximise
∑

S∈F̂(R∪)

xS · V (S)

such that xS + xS′ ≤ 1 ∀ F̂(R∪) : S ∩ S′ ̸= ∅
[Only good candidates]

Computational Advantage
Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions
Approximated solutions have a quality that is > 95% of the optimal one

33 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

34 of 57

What is Team Formation for Us?

Partition a classroom A into proficient and congenial teams of size k [|A| = m · k]

35 of 57

Input of the Optimisation Problem

Student Representation
• g ∈ {man,woman} stands for the student’s gender

• p ∈ [−1, 1]4 is a personality profile with 4 personality traits

• l : C → [0, 1] gives the student’s level l(c) for competence c ∈ C

[Congeniality]

Task Representation (Same for all Teams)
A task τ requires a competence level met by at least one student [Proficiency]

36 of 57

Input of the Optimisation Problem

Student Representation
• g ∈ {man,woman} stands for the student’s gender

• p ∈ [−1, 1]4 is a personality profile with 4 personality traits

• l : C → [0, 1] gives the student’s level l(c) for competence c ∈ C

[Congeniality]

Task Representation (Same for all Teams)
A task τ requires a competence level met by at least one student [Proficiency]

36 of 57

Input of the Optimisation Problem

Student Representation
• g ∈ {man,woman} stands for the student’s gender

• p ∈ [−1, 1]4 is a personality profile with 4 personality traits

• l : C → [0, 1] gives the student’s level l(c) for competence c ∈ C

[Congeniality]

Task Representation (Same for all Teams)
A task τ requires a competence level met by at least one student [Proficiency]

36 of 57

Value V (S) of a Team S given a Task τ

• The value (utility) of a team S ∈ [A]k given a task τ is defined as:

V (S, τ) = λ ·
proficiency︷ ︸︸ ︷

Uprof(S, τ)+(1− λ) ·
congeniality︷ ︸︸ ︷
Ucong(S) [λ = proficiency importance]

• Given a partition S of A into teams of size k, the value of S is defined as:

V (S, τ) =
∏

S∈S
V (S, τ) [Bernoulli-Nash product]

37 of 57

Value V (S) of a Team S given a Task τ

• The value (utility) of a team S ∈ [A]k given a task τ is defined as:

V (S, τ) = λ ·
proficiency︷ ︸︸ ︷

Uprof(S, τ)+(1− λ) ·
congeniality︷ ︸︸ ︷
Ucong(S) [λ = proficiency importance]

• Given a partition S of A into teams of size k, the value of S is defined as:

V (S, τ) =
∏

S∈S
V (S, τ) [Bernoulli-Nash product]

37 of 57

Non-linear IP Formulation

maximise
∏

S∈[A]k
V (S, τ)xS [V (S, τ)xS = V (S, τ) if xS = 1, 1 otherwise]

subject to
∑

S∈[A]k
xS = m [Partition of exactly m teams]∑

S∈[A]k
MiS︸︷︷︸
i∈S

·xS = 1 ∀i ∈ A [No overlapping teams]

Modelling Problem∏
S∈[A]k V (S, τ)

xS is not a linear function, cannot be solved with ILP solvers

38 of 57

Non-linear IP Formulation

maximise
∏

S∈[A]k
V (S, τ)xS [V (S, τ)xS = V (S, τ) if xS = 1, 1 otherwise]

subject to
∑

S∈[A]k
xS = m [Partition of exactly m teams]∑

S∈[A]k
MiS︸︷︷︸
i∈S

·xS = 1 ∀i ∈ A [No overlapping teams]

Modelling Problem∏
S∈[A]k V (S, τ)

xS is not a linear function, cannot be solved with ILP solvers

38 of 57

Positive Monotonic Functions

Applying a positive monotonic (PM) function to the objective does not change the
optimum, since the order among solutions is preserved

Question
Which PM function g(·) should I pick such that g

(∏
S∈[A]k V (S, τ)

xS
)
is linear?

Solution
• log is a PM function in the considered domain

• log
(∏

S∈[A]k V (S, τ)
xS
)
=

∑
S∈[A]k xS · log(V (S, τ))︸ ︷︷ ︸

constant value

[Linear objective function]

39 of 57

Positive Monotonic Functions

Applying a positive monotonic (PM) function to the objective does not change the
optimum, since the order among solutions is preserved

Question
Which PM function g(·) should I pick such that g

(∏
S∈[A]k V (S, τ)

xS
)
is linear?

Solution
• log is a PM function in the considered domain

• log
(∏

S∈[A]k V (S, τ)
xS
)
=

∑
S∈[A]k xS · log(V (S, τ))︸ ︷︷ ︸

constant value

[Linear objective function]

39 of 57

Positive Monotonic Functions

Applying a positive monotonic (PM) function to the objective does not change the
optimum, since the order among solutions is preserved

Question
Which PM function g(·) should I pick such that g

(∏
S∈[A]k V (S, τ)

xS
)
is linear?

Solution
• log is a PM function in the considered domain

• log
(∏

S∈[A]k V (S, τ)
xS
)
=

∑
S∈[A]k xS · log(V (S, τ))︸ ︷︷ ︸

constant value

[Linear objective function]

39 of 57

Linearised ILP Formulation

maximise
∑

S∈[A]k
xS · log(V (S, τ))

subject to
∑

S∈[A]k
xS = m∑

S∈[A]k
MiS · xS = 1 ∀i ∈ A

Further Reading
Andrejczuk et al., “Synergistic Team Composition: A Computational Approach to
Foster Diversity in Teams”, Knowledge-Based Systems, 2019

40 of 57

Linearised ILP Formulation

maximise
∑

S∈[A]k
xS · log(V (S, τ))

subject to
∑

S∈[A]k
xS = m∑

S∈[A]k
MiS · xS = 1 ∀i ∈ A

Further Reading
Andrejczuk et al., “Synergistic Team Composition: A Computational Approach to
Foster Diversity in Teams”, Knowledge-Based Systems, 2019

40 of 57

Further Reading

• Boyd and Vandenberghe, Convex Optimization, 2004

• Hentenryck and Bent, Online Stochastic Combinatorial Optimization, 2009

• Bistaffa et al., “A Computational Approach toQuantify the Benefits of
Ridesharing for Policy Makers and Travellers”, IEEE Transactions on Intelligent
Transportation Systems, 2021

• Andrejczuk et al., “Synergistic Team Composition: A Computational Approach
to Foster Diversity in Teams”, Knowledge-Based Systems, 2019

41 of 57

See you tomorrow!

42 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

43 of 57

Google Colab Hands-On Session

1. Weighted Knapsack Problem
https://bit.ly/aihub2022-wk

2. Weighted Set Packing Problem
https://bit.ly/aihub2022-wsp

3. Coalition Structure Generation
https://bit.ly/aihub2022-csg

4. Approximately Equivalent ISG
https://bit.ly/aihub2022-aeisg

5. CSG on ISGs as Graph Clustering
https://bit.ly/aihub2022-gc

44 of 57

https://bit.ly/aihub2022-wk
https://bit.ly/aihub2022-wsp
https://bit.ly/aihub2022-csg
https://bit.ly/aihub2022-aeisg
https://bit.ly/aihub2022-gc

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

45 of 57

Characteristic Function

Characteristic Function
The function v : P(A) → R associates a value to every coalition (i.e., subset) of A

Exponential Complexity
Representing v(·) as a table requires an exponential number of steps (i.e., 2|A|)

Mitigate this Complexity
(1) Restrict the set of coalitions or (2) consider v(·) with a specific structure

46 of 57

Induced Subgraph Games (ISGs)

w

=
2

w = 3

w
=

1

Weighted Graph G among Agents
Gw = ({ , , , }, {(,)︸ ︷︷ ︸

2

, (,)︸ ︷︷ ︸
3

, (,)︸ ︷︷ ︸
1

})

Value is the Sum of Induced Edges
v({ , , }) = 2+ 1 = 3

47 of 57

Induced Subgraph Games (ISGs)

w

=
2

w = 3

w
=

1

Weighted Graph G among Agents
Gw = ({ , , , }, {(,)︸ ︷︷ ︸

2

, (,)︸ ︷︷ ︸
3

, (,)︸ ︷︷ ︸
1

})

Value is the Sum of Induced Edges
v({ , , }) = 2+ 1 = 3

47 of 57

Induced Subgraph Games (ISGs)

Succinct Game Representation
The characteristic function is entirely represented by the weighted graph Gw

Computational Advantages
CSG on ISGs can be treated as a graph clustering problem (“easier” than CSG)

Limited Representation Power
Not every characteristic function game can be perfectly represented as an ISG

48 of 57

Induced Subgraph Games (ISGs)

Succinct Game Representation
The characteristic function is entirely represented by the weighted graph Gw

Computational Advantages
CSG on ISGs can be treated as a graph clustering problem (“easier” than CSG)

Limited Representation Power
Not every characteristic function game can be perfectly represented as an ISG

48 of 57

ISGs Cannot Represent Every CFG

w
=

w =

w
= v(S) =


0, if |S| = 1,
1, if |S| = 2,
6, if |S| = 3.

49 of 57

Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs

50 of 57

Can We Approximate a CFG as an ISG?

Approximately Equivalent ISG (AE-ISG)
Given a CFG C, compute the ISG that best approximates C, namely AE-ISG(C)

v({ }) = 3

v({ , }) = −2

v({ , , }) = 7

v({ , }) = 1

v({ , , }) = 0
. . .

C w

=
?

w =?

w
=

?

AE-ISG(C)

51 of 57

AE-ISG as Norm Approximation (ℓp Linear Regression)

minimise ∥Mw − v︸ ︷︷ ︸
residuals

∥p

w w w






...

...
...

...
0 1 1 v({ , , })

M = 1 0 0 v = v({ , })
1 0 1 v({ , , })
...

...
...

...

52 of 57

AE-ISG as Norm Approximation (ℓp Linear Regression)

minimise ∥Mw − v︸ ︷︷ ︸
residuals

∥p

Residual Vector
The residual vector r = Mw − v is the vector of differences between approximated
coalitional values (i.e., Mw) and original coalitional values (i.e., v)

Constrained Norm Approximation
Some coalitions (singletons) can be represented exactly via additional constraints

53 of 57

AE-ISG as Norm Approximation (ℓp Linear Regression)

Size of AE-ISG Model
Building M and v requires to go through the set of coalitional values (obviously)

Computational Complexity
If the set of feasible coalitions is polynomial (e.g., ridesharing), computing
AE-ISG(C) has a manageable complexity, depending on the norm ℓp:
• ℓ1/ℓ∞ → Linear Programming (exact, CPU)
• ℓ2 → Least Squares (exact/analytical, GPU)
• ℓ>2 → Iteratively Reweighted Least Squares (numerical)

54 of 57

CSG on ISGs as Graph Clustering

2

3

1

−4

1

7

CSG on ISGs Optimisation Objective
Maximise sum of of clusters’ internal weights (namely, coverage measure)

55 of 57

CSG on ISGs as Graph Clustering

2

3

1

−4

1

7

CSG on ISGs Optimisation Objective
Maximise sum of of clusters’ internal weights (namely, coverage measure)

55 of 57

ILP for Optimal Graph Clustering

Xij = 1 → edge {i, j} is “activated” (i and j are in the same cluster)

maximise
∑

i,j∈A
wij · Xij [Coverage objective function]

subject to ∀i, j, z ∈ A :


Xij + Xjz − 2 · Xiz ≤ 1
Xiz + Xij − 2 · Xjz ≤ 1
Xjz + Xiz − 2 · Xij ≤ 1

[Transitivity]

∀i ∈ A :
∑

j∈A
Xij ≤ k [Cardinality constraint]

56 of 57

Google Colab Hands-On Session

1. Weighted Knapsack Problem
https://bit.ly/aihub2022-wk

2. Weighted Set Packing Problem
https://bit.ly/aihub2022-wsp

3. Coalition Structure Generation
https://bit.ly/aihub2022-csg

4. Approximately Equivalent ISG
https://bit.ly/aihub2022-aeisg

5. CSG on ISGs as Graph Clustering
https://bit.ly/aihub2022-gc

57 of 57

https://bit.ly/aihub2022-wk
https://bit.ly/aihub2022-wsp
https://bit.ly/aihub2022-csg
https://bit.ly/aihub2022-aeisg
https://bit.ly/aihub2022-gc

	1
	Theoretical Foundations of Constrained Optimisation in MAS
	Combinatorial Auctions
	Characteristic Function Games

	Practical Applications of Constrained Optimisation in MAS
	Ridesharing (Computational Challenge)
	Team Formation (Modelling Challenge)

	2
	Google Colab Hands-On Session
	Induced Subgraph Games
	Approximately Equivalent ISGs

