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Constrained Optimisation for Sustainability

Constrained Optimisation as Theoretical Framework

Constrained optimisation (fundamental area of Al) used as technique to
achieve computational sustainability via optimal collective formation

Challenge in Real-World Scenarios

The number of possible collectives is (“curse of dimensionality”),
so large-scale optimisation problems are to solve
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Agenda

@ July 6, 14:30 - 15:30:

Theoretical Foundations of Constrained Optimisation in MAS

Practical Applications of Constrained Optimisation in MAS
@ July 7, 9:30 - 10:30:

Google Colab Hands-On Session
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Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS
Combinatorial Auctions
Characteristic Function Games
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Single-Item Auctions
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Winner Determination Problem (WDP)

Objective

Given a set of bids, allocate the good to the bidder whose bid maximises the
auctioneer’s revenue
WDPs for Single-ltem Auctions are Easy

e English: last bid wins

e Japanese: last remaining bidder wins

e Dutch: first bid wins
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Multi-Unit Auctions
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WDP for Multi-Unit Auctions

Example of a Multi-Unit Auction

We want to sell 15 apples maximising the revenue

What it the Optimal Allocation with these Bids?

* A:buy 12 applesfor4€  [V4({90.9.9.9.9.96.$.0.6.6.6.6}) — /<]
* B: buy 2 apples for 2€ [Vi({®, ®}) = 2€]
e C:buy 1apple for 2€ [Vc({@}) = 2€]
e D: buy 1apple for 1€ [Vo({@}) = 1€]
* E:buy 4 apples for 10€ [Ve({@,®. @ @}) = 10€]
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WDP as a Weighted Knapsack Problem
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WDP as a Weighted Knapsack Problem

e Let xa, Xg, Xc, Xp, X¢ be decision variables  [One binary variable for each bid]
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WDP as a Weighted Knapsack Problem

e Let xa, Xg, Xc, Xp, X¢ be decision variables  [One binary variable for each bid]

* Maximise the revenue obtained by filling the backpack

Integer Linear Programming (ILP) Formulation

maximise 4-x4+2-xg+2-xc+xp+ 10 - xg [Values of accepted bids]
subjectto 12-xa+2-xg+xc+ xp+4-xg <15  ["Capacity” constraint]

XA, X, Xc, Xp, Xe € {0, 1} [Binary decision variables]
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Multi-Item (Combinatorial) Auctions
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Multi-Item (Combinatorial) Auctions
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Multi-Item (Combinatorial) Auctions

! ' ﬂ 7 Multi-item bids
E a9
b\l et age o Vg ({®,@}) = 400€
L JoN |
& 3 B

13 of 57




Multi-Item (Combinatorial) Auctions
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Multi-Item (Combinatorial) Auctions
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Multi-Item (Combinatorial) Auctions
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WDP as Weighted Set Packing (WSP) Problem

* Given a set N of items and a set S of bids, let M be a |[N| x |S| matrix
* M;s = Tif and only if item i € N is part of bid S € S, M;s = 0 otherwise
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Weighted Set Packing (WSP) Problem

1T 10
M=10 1 0
0 0 1
ILP Formulation for WSP
maximise ZSGS xs - V(S) [Value of each active bid]
subject to ZSGS Mis-xs—1 VYieN [All items must be sold]

ZS s Mis-xs—1 VieN [ltems can remain unsold]
S
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Weighted Set Packing (WSP) Problem

T 1 0 1
M=10 1 0 1
0 0 1 1
ILP Formulation for WSP
maximise ZSGS xs - V(S) [Value of each active bid]
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Computational Sustainability in Multi-Agent Systems

Theoretical Foundations of Constrained Optimisation in MAS

Characteristic Function Games
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Characteristic Function Games (CFGs)
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Characteristic Function Games (CFGs)

Set of Agents A
A={8,2,2,8}

_______________

-
N e e e e e e e e e e e =~

_______________

17 of 57




Characteristic Function Games (CFGs)

Set of Agents A

Eod A={8,4, 2 8}

e 2
8 &

17 of 57

Characteristic Function v(+)




Characteristic Function Games (CFGs)

Set of Agents A
& A={8,2 2, 8}

.. ,/,, \‘I
-

Characteristic Function v(+)
,/’ ’// [} V({ﬂ, &}) = 0

4
7
7
1
\
\
A
~

17 of 57




Characteristic Function Games (CFGs)

Set of Agents A
N A={8,2 2, 8}

_______________

Characteristic Function v(+)

8 [ ] - v({8,3,8)) = 7
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Characteristic Function Games (CFGs)

- Set of Agents A
/ ...\‘\ 8 A:{ﬂ,'.'.','a'.,a}

Characteristic Function v(+)

& e v({8,2})=3

P

’,
v
A
~
~

17 of 57




Characteristic Function Games (CFGs)

Set of Agents A

Eod A={8,4, 2 8}
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Coalition Structure Generation (CSG) ~ WDP for CFGs

Objective of Coalition Structure Generation
Compute the pariition of Athat maximises the sum of the corresponding values

ILP Formulation for Coalition Structure Generation
maximise Zses xs - V(S) [Value of each selected coalition]

subject to ZSE& Mis-xs—1 VYieN [Each agent in one coalition]
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. HrrjBihtH b,b=:=biZHii5=:
Coalition Structure Generation (CSG) ~ WDP for CFGs

* Given A and a set S of coalitions (i.e., subsets) of A, let M be a |A| x |S| matrix

* M;s = 1if and only if agent a € Alis part of coalition S € S, M;s = 0 otherwise
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Characteristic Function

Characteristic Function
The function v : P(A) — R associates a value to cvery coalition (i.e., subset) of A

Exponential Complexity

Representing v(-) as a fable requires an exponential number of steps (i.e., 21

Mitigate this Complexity

(1) Restrict the set of coalitions or (2) consider v(-) with a specific siruciure

20 of 57
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Cardinality-Restricted CFGs

' Maximum Cardinality k

E.g., only coalitions of size < 3 are feasible

Polynomial Number of Coalitions

a8
3 ﬂ & Total number of coalitions is Zfﬁ (";") =
\ S/ O(A"), ie., polynomial wrt |A|

_______________

. e e e e e — ==

21 0f 57




Cardinality-Restricted CFGs

. Maximum Cardinality k

E.g., only coalitions of size < 3 are feasible

Polynomial Number of Coalitions

ﬂ & Total number of coalitions is Zfﬁ (";") =
' 2 O(A"), ie., polynomial wrt |A|

_______________
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Computational Sustainability in Multi-Agent Systems

Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
Team Formation (Modelling Challenge)
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Practical Applications of Constrained Optimisation in MAS
Ridesharing (Computational Challenge)
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What is Ridesharing for Us?

Arrange shared rides (coalitions) among users that submit real-1/me requests, with
the objective of maximising a given utility measure (e.g., cost / CO, reduction, etc.)
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Ridesharing Solution Algorithm (Request Collection)

Incoming Requests

GRFEE

“I just issued a trip request”

Waiting Trip Requests

ae

“l am waiting to share my ride”
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Input of the Optimisation Problem

Example of a Ridesharing Request

“I want to go from point i to point j, and | am willing to wait § minutes to be
picked up by somebody (d = false) / before | leave with 1y own car (d = true)”
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Input of the Optimisation Problem

Example of a Ridesharing Request

“I want to go from point i to point j, and | am willing to wait § minutes to be
picked up by somebody (d = false) / before | leave with 1y own car (d = true)”

e r={ij,d,0o) [A ridesharing request is a tuple r]
°*rekR [The system receives a set R; of requests at each time step t]
* (Ri,..., Ry ..., Ry [Sequence of inputs over a time horizon h]
e The input sequence is not known a priori [Online optimisation problem]

26 of 57
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Feasible Coalition S of Requests (Car)
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Feasible Coalition S of Requests (Car)

e S| <k [Maximum cardinality constraint]
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Feasible Coalition S of Requests (Car)

e S| <k [Maximum cardinality constraint]
* min, ecs(ty + 0a) > max,es £ [Earliest req. in the pool when latest arrives]
o \/Wes d, [At least one driver]
o ... [Some other constraints]

= < i >
F(S)=|S| <k A Eler;ta+5a_r;22?9(tﬁ A \/d7 A

ry€S

F(R)={Se€2k| F(S)} [Set of feasible coalitions from a set R of requests]
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Value V(S) of a Feasible Coalition S

e The value (utility) of a coalition S is defined as:

environmental benefits quality of service
7\ 7\

V(S) = pPco, * ECOZ(S) + Phoise * Enoise(s) + Ptraffic * Etraffic(s) + PQos * Q(S)
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Value V(S) of a Feasible Coalition S

e The value (utility) of a coalition S is defined as:

environmental benefits quality of service
7\ 7\

V(S) = pPco, * ECOZ(S) + Phoise * Enoise(s) + Ptraffic * Etraffic(s) + PQos * Q(S)

* Eco,(S) = Envise(S) = |5 - Zrgs ) —d(5) [Proportional to travelled distance]

2resd{r})
* Eaic(S) =S| — 1 [Number of cars that have been avoided]
in-car delay
°* Q(S) == ,cs % [Relative difference with optimal arrival time ]
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Optimal ILP Formulation
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Optimal ILP Formulation

e Assume that (Ry,... R, ..., Ry)is fully known a priori [Offline problem]
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Optimal ILP Formulation

e Assume that (Ry,... R, ..., Ry)is fully known a priori [Offline problem]

o Let R¥ = Uf:1 R; [Set of all requests over the entire time horizon h]

29 of 57
S



Optimal ILP Formulation

e Assume that (Ry,... R, ..., Ry)is fully known a priori [Offline problem]

o Let R¥ = Uf:1 R: [Set of all requests over the entire time horizon h]
Optimal ILP Formulation
maximise Z xs - V(S)

SEF(RY) [Weighted set packing]
suchthat xs+xg <1 VF(R)):SNS #0
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Curse of Dimensionality
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Curse of Dimensionality

e Recall that F(R) = {S € 2R | F(S)}
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Curse of Dimensionality

e Recall that F(R) = {S € 2R | F(S)}
o With [S] < k, |F(R)| < 2%, ("f'), ie, O(R") [Polynomial complexity]

e In practice, |R;| can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem

Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution
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Curse of Dimensionality

e Recall that F(R) = {S € 2R | F(S)}
o With [S] < k, |F(R)| < 2%, ("f'), ie, O(R") [Polynomial complexity]

e In practice, |R;| can be as high as 400 [Request rate in NY taxi dataset]

Scalability Problem

Enumerating all coalitions in F(R) is impractical, especially in realistic
application scenarios with very limited time budget for the solution

Our Solution
Consider a restricted set F(R) of good candidate coalitions instead of F(R)

30 of 57
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Ridesharing Solution Algorithm (Candidate Generation)
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Ridesharing Solution Algorithm (ILP Optimisation)

Good Candidates 40 seconds
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Approximated ILP Formulation

maximise Z xs - V(S)
se/(RY) [Only good candidates]
suchthat xs+xy <1 V /(R :SNS #0
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Approximated ILP Formulation

maximise Z xs - V(S)
se/(RY) [Only good candidates]
suchthat xs4+x¢ <1 V7 (RY):SNS #0

Computational Advantage
Approximated ILP has a number of variables that is < 0.01% of the optimal ILP
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Approximated ILP Formulation

maximise Z xs - V(S)
se/(RY) [Only good candidates]

suchthat xs4+x¢ <1 V7 (RY):SNS #0

Computational Advantage
Approximated ILP has a number of variables that is < 0.01% of the optimal ILP

Quality of Approximated Solutions
Approximated solutions have a quality that is > 95% of the optimal one
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Computational Sustainability in Multi-Agent Systems

Practical Applications of Constrained Optimisation in MAS

Team Formation (Modelling Challenge)
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What is Team Formation for Us?

Partition a classroom A into proficient and congenial teams of size k [|A| = m - k]
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Input of the Optimisation Problem
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Input of the Optimisation Problem

Student Representation
e g € {man, woman} stands for the student’s gender
[Congeniality]
o pe[—1,1]*isa personality profile with 4 personality traits

e [: C — [0, 1] gives the student’s level [(c) for competence ¢ € C
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Input of the Optimisation Problem

Student Representation
e g € {man, woman} stands for the student’s gender
[Congeniality]
o pe[—1,1]*isa personality profile with 4 personality traits

e [: C — [0, 1] gives the student’s level [(c) for competence ¢ € C

Task Representation (Same for all Teams)
A task 7 requires a competence level met by at least one student [Proficiency]
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Value V(S) of a Team S given a Task 7

e The value (utility) of a team S € [A]* given a task T is defined as:
proficiency congeniality

—— —
V(S,7) = X Uprot(S, 7) +(1 = A) - Ucong(S) [A = proficiency importance]
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Value V(S) of a Team S given a Task 7

e The value (utility) of a team S € [A]* given a task T is defined as:
proficiency congeniality

—— —
V(S,7) = X Uprof(S, 7) +(1 = A) - Ucong(S) [N = proficiency importance]

* Given a partition S of A into teams of size k, the value of S is defined as:

V(S,7) = H

ses V(S,T) [Bernoulli-Nash product]

37 of 57




Non-linear IP Formulation

maximise Hse[A]k V(S,7)°  [V(S,7)° = V(S,7)if xs = 1, 1 otherwise]
subject to ZSG[A]“ Xs=m [Partition of exactly m teams]

ZSE[A]kA/’f,'XS =1 VicA [No overlapping teams]

i€S
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Non-linear IP Formulation

maximise Hse[A]k V(S,7)°  [V(S,7)° = V(S,7)if xs = 1, 1 otherwise]

subject to ZSG[A]k Xs =m [Partition of exactly m teams]
Z%[A]kff,'xs =1 VieA [No overlapping teams]
ics

Modelling Problem

[Lsepap V(S 7)™ is not a linear function, cannot be solved with ILP solvers
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Positive Monotonic Functions

Applying a positive monotonic (PM) function to the objective does rnof change the
optimum, since the order among solutions is preserved
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Positive Monotonic Functions

Applying a positive monotonic (PM) function to the objective does o7 change the
optimum, since the order among solutions is preserved

Question
Which PM function g(+) should I pick such that g(HSG[A]k V(S, T)XS) is linear?
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Positive Monotonic Functions

Applying a (PM) function to the objective does o’ change the
optimum, since the order among solutions is preserved

Question
Which PM function g(+) should I pick such that g(HSE[A]k V(S, T)X5> is linear?

Solution
¢ log is a PM function in the considered domain

. |og(H5€[A]k V(S, T)XS) = s Xs - 1og(V(S, 7)) [Linear objective function]
——

constant value
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Linearised ILP Formulation

maximise ZSG[A]" xs - log(V(S,7))
subject to ZSG[A]" Xs =

ZSE[A]" M,'S c Xg — 1 Vi €A
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Linearised ILP Formulation

maximise ZSG[A]" xs - log(V(S,7))
subject to ZSG[A]" Xs =

ZSG[A]" M,'s c Xg — 1 Vi €A

Further Reading

Andrejczuk et al., “Synergistic Team Composition: A Computational Approach to
Foster Diversity in Teams”, Knowledge-Based Systems, 2019
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Further Reading

e Boyd and Vandenberghe, Convex Optimization, 2004
e Hentenryck and Bent, Online Stochastic Combinatorial Optimization, 2009

e Bistaffa et al., “A Computational Approach to Quantify the Benefits of
Ridesharing for Policy Makers and Travellers”, IEEE Transactions on Intelligent
Transportation Systems, 2021

e Andrejczuk et al., “Synergistic Team Composition: A Computational Approach
to Foster Diversity in Teams”, Knowledge-Based Systems, 2019
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See you tomorrow!
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Computational Sustainability in Multi-Agent Systems

Google Colab Hands-On Session
Induced Subgraph Games
Approximately Equivalent ISGs
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Google Colab Hands-On Session

1. Weighted Knapsack Problem
https://bit.ly/aihub2022-wk

2. Weighted Set Packing Problem
https://bit.ly/aihub2022-wsp

3. Coalition Structure Generation

https://bit.ly/aihub2022-csg
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https://bit.ly/aihub2022-wsp
https://bit.ly/aihub2022-csg
https://bit.ly/aihub2022-aeisg
https://bit.ly/aihub2022-gc

Computational Sustainability in Multi-Agent Systems

Google Colab Hands-On Session
Induced Subgraph Games
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Characteristic Function

(2) consider v(-) with a specific struciure
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Induced Subgraph Games (ISGs)

§gd vio=3 Weighted Graph G among Agents
- 2 Go= ({8,228}, {(8.2).(2.2). (2, 8)))
//'1« — \“2,—/ N—— \“1,_/
s!?’ ”" ’
<
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Induced Subgraph Games (ISGs)

o 3 Weighted Graph G among Agents

- | G,=({8,2,2,8}1{(8 2)(8,2)(2,2)})
S _ —_—— —— ——
Ql‘?’ ”“ : 2 3 1
ﬂ & Value is the Sum of Induced Edges
ey —241-3

_______________
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Induced Subgraph Games (ISGs)

Succinct Game Representation
The characteristic function is ¢ntirely represented by the weighted graph G,,

Computational Advantages
CSG on ISGs can be treated as a graph clustering problem (“easier” than CSG)
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Induced Subgraph Games (ISGs)

Succinct Game Representation
The characteristic function is ¢ntirely represented by the weighted graph G,,

Computational Advantages
CSG on ISGs can be treated as a graph clustering problem (“easier” than CSG)

Limited Representation Power

Not every characteristic function game can be perfecily represented as an ISG
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ISGs Cannot Represent Every CFG

2 ‘; 0, if|S] =1,
KY Y v(S) =< 1, if[S|=2,
6, if|S]=3.
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Computational Sustainability in Multi-Agent Systems

Google Colab Hands-On Session

Approximately Equivalent ISGs
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Can We Approximate a CFG as an ISG?

Approximately Equivalent ISG (AE-ISG)
Given a CFG C, compute the ISG that Hest approximates C, namely AE-ISG(C)

o _ gy “ue=’
—_— v({&}) =3
@ S ({5, 2)) = -2 “ ., g
v({2,2,8}) =7 AE-ISG(C) 4 I
/ ‘ ({8, 2}) =1 ¢ > @ 5
v({8,2,8}) =0

8 &
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AE-ISG as Norm Approximation (¢, Linear Regression)

@ 9 e
2 =2
0 1 1 v({,2,8))
minimise [|[Mw — v||, M=11 0 0 v=| v({&,2})
residuals 1 0 1 V({ﬂ, 87 &})

52 of 57



AE-ISG as Norm Approximation (¢, Linear Regression)

minimise [[Mw — v||,
———

residuals

Residual Vector
The residual vector r = Mw — v is the vector of differences between approximated
coalitional values (i.e., Mw) and original coalitional values (i.e., v)

Constrained Norm Approximation

Some coalitions (singletons) can be represented c¢xactly via additional constraints
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AE-ISG as Norm Approximation (¢, Linear Regression)

Size of AE-ISG Model

Building M and v requires to go through the set of coalitional values (obviously)

Computational Complexity

If the set of feasible coalitions is (e.g., ridesharing), computing
AE-ISG(C) has a complexity, depending on the norm /,:

e (,/lsx — Linear Programming (exact, CPU)
e (, — Least Squares (exact/analytical, GPU)

e (., — lteratively Reweighted Least Squares (numerical)
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CSG on ISGs as Graph Clustering
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CSG on ISGs as Graph Clustering

X

— K
]

CSG on ISGs Optimisation Objective

Maximise sum of of clusiers” internal weights (namely, coverage measure)
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ILP for Optimal Graph Clustering

Xjj = 1— edge {i,j} is “activated” (i and j are in the same cluster)

maximise ZijeA wi - Xjj [Coverage objective function]

subjectto Vi, j,z€ A: ¢ Xy +X;j—2- X, <1 [Transitivity]
)(jz+Xiz_2'XijS 1
. : < L .
Vie A ZJEA Xi; < k [Cardinality constraint]
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Google Colab Hands-On Session

4. Approximately Equivalent ISG
https://bit.ly/aihub2022-aeisg

5. CSG on ISGs as Graph Clustering
https://bit.ly/aihub2022-gc
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https://bit.ly/aihub2022-wsp
https://bit.ly/aihub2022-csg
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